Author
Listed:
- Philipp Maximilian Müller
- Philipp Päuser
- Björn-Martin Kurzrock
Abstract
Purpose - This research provides fundamentals for generating (partially) automated standardized due diligence reports. Based on original digital building documents from (institutional) investors, the potential for automated information extraction through machine learning algorithms is demonstrated. Preferred sources for key information of technical due diligence reports are presented. The paper concludes with challenges towards an automated information extraction in due diligence processes. Design/methodology/approach - The comprehensive building documentation includingn = 8,339 digital documents of 14 properties and 21 technical due diligence reports serve as a basis for identifying key information. To structure documents for due diligence, 410 document classes are derived and documents principally checked for machine readability. General rules are developed for prioritized document classes according to relevance and machine readability of documents. Findings - The analysis reveals that a substantial part of all relevant digital building documents is poorly suited for automated information extraction. The availability and content of documents vary greatly from owner to owner and between document classes. The prioritization of document classes according to machine readability reveals potentials for using artificial intelligence in due diligence processes. Practical implications - The paper includes recommendations for improving the machine readability of documents and indicates the potential for (partially) automating due diligence processes. Therefore, document classes are derived, reviewed and prioritized. Transaction risks can be countered by an automated check for completeness of relevant documents. Originality/value - This paper is the first published (empirical) research to specifically assess the automated digital processing of due diligence reports. The findings are helpful for improving due diligence processes and, more generally, promoting the use of machine learning in the property sector.
Suggested Citation
Philipp Maximilian Müller & Philipp Päuser & Björn-Martin Kurzrock, 2020.
"Fundamentals for automating due diligence processes in property transactions,"
Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 39(2), pages 97-124, April.
Handle:
RePEc:eme:jpifpp:jpif-09-2019-0130
DOI: 10.1108/JPIF-09-2019-0130
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jpifpp:jpif-09-2019-0130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.