IDEAS home Printed from https://ideas.repec.org/a/eme/jespps/jes-08-2022-0466.html
   My bibliography  Save this article

The financial market's ability to forecast economic growth: information from sectoral movements

Author

Listed:
  • Hardik Marfatia

Abstract

Purpose - Financial market holds superior information that can give insights into the future trajectory of economic growth. Further, identifying sectors that hold the key to future economic growth is important for all economies, but particularly relevant to emerging markets. However, unlike existing studies, the paper provides new insights into the forward-oriented nexus between financial markets and economic growth. Design/methodology/approach - This paper takes a forward-looking approach of using financial market information to predict future economic growth. The authors use ARDL modeling approach to predict economic growth using the information from stock market sectoral returns. Findings - The authors find that sectoral stock returns significantly improve economic growth forecasts. However, the forecasting superiority is not uniform across sectors and horizons. Auto, consumers' spending, materials and realty sectors provide the most forecasting gains. In contrast, banking, capital goods and industrial sectors provide superior forecasts, but only at horizons beyond one year. The authors also find that the forecast superiority of sectors at longer horizons is inversely related to volatility. Research limitations/implications - Research highlights the need for sector-focused policy actions in driving economic growth. Further, the findings of the paper identify sectors that drive short-, medium- and long-term economic growth. Practical implications - There is a significant heterogeneity among different sectors and across horizons in predicting economic growth. Results suggest that targeted policy actions in sectors like materials, metals, oil and gas, and realty are key in driving economic growth. Further, policies geared toward the grassroots industries are at least as beneficial as the large-scale industries. Evidence also suggests the need for an active fiscal policy to address infrastructural bottlenecks in primary industries like basic materials and energy. Evidence nevertheless does not undermine the role of monetary policy actions. Originality/value - Unlike any paper till date, the innovation of the paper is that it takes an ARDL modeling approach to measure stock market sectoral returns' ability to forecast economic growth several months ahead in the future. Though the paper considers the Indian case, the innovation and contribution extents to the entire field of economic studies.

Suggested Citation

  • Hardik Marfatia, 2023. "The financial market's ability to forecast economic growth: information from sectoral movements," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(7), pages 1467-1484, January.
  • Handle: RePEc:eme:jespps:jes-08-2022-0466
    DOI: 10.1108/JES-08-2022-0466
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JES-08-2022-0466/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JES-08-2022-0466/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JES-08-2022-0466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Forecasting economic growth; Emerging economies; Stock markets; Combination forecasts; C22; C53; E37; F47; O47;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jespps:jes-08-2022-0466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.