IDEAS home Printed from https://ideas.repec.org/a/eme/jespps/jes-02-2016-0026.html
   My bibliography  Save this article

Quantile treatment effect and double robust estimators

Author

Listed:
  • Francesco Caracciolo
  • Marilena Furno

Abstract

Purpose - Several approaches have been proposed to evaluate treatment effect, relying on matching methods propensity score, quantile regression, influence function, bootstrap and various combinations of the above. This paper considers two of these approaches to define the quantile double robust (DR) estimator: the inverse propensity score weights, to compare potential output of treated and untreated groups; the Machado and Mata quantile decomposition approach to compute the unconditional quantiles within each group – treated and control. Two Monte Carlo studies and an empirical application for the Italian job labor market conclude the analysis. The paper aims to discuss these issue. Design/methodology/approach - The DR estimator is extended to analyze the tails of the distribution comparing treated and untreated groups, thus defining the quantile based DR estimator. It allows us to measure the treatment effect along the entire outcome distribution. Such a detailed analysis uncovers the presence of heterogeneous impacts of the treatment along the outcome distribution. The computation of the treatment effect at the quantiles, points out variations in the impact of treatment along the outcome distributions. Indeed it is often the case that the impact in the tails sizably differs from the average treatment effect. Findings - Two Monte Carlo studies show that away from average, the quantile DR estimator can be profitably implemented. In the real data example, the nationwide results are compared with the analysis at a regional level. While at the median and at the upper quartile the nationwide impact is similar to the regional impacts, at the first quartile – the lower incomes – the nationwide effect is close to the North-Center impact but undervalues the impact in the South. Originality/value - The computation of the treatment effect at various quantiles allows to point out discrepancies between treatment and control along the entire outcome distributions. The discrepancy in the tails may differ from the divergence between the average values. Treatment can be more effective at the lower/higher quantiles. The simulations show the performance at the quartiles of quantile DR estimator. In a wage equation comparing long and short term contracts, this estimator shows the presence of an heterogeneous impact of short term contracts. Their impact changes depending on the income level, the outcome quantiles, and on the geographical region.

Suggested Citation

  • Francesco Caracciolo & Marilena Furno, 2017. "Quantile treatment effect and double robust estimators," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 44(4), pages 585-604, September.
  • Handle: RePEc:eme:jespps:jes-02-2016-0026
    DOI: 10.1108/JES-02-2016-0026
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JES-02-2016-0026/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JES-02-2016-0026/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JES-02-2016-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Raimondo & Francesco Caracciolo & Concetta Nazzaro & Giuseppe Marotta, 2021. "Organic Farming Increases the Technical Efficiency of Olive Farms in Italy," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    2. Elisabetta Gotor & Muhammed Abdella Usman & Martina Occelli & Basazen Fantahun & Carlo Fadda & Yosef Gebrehawaryat Kidane & Dejene Mengistu & Afewerki Yohannes Kiros & Jemal Nurhisen Mohammed & Mekone, 2021. "Wheat Varietal Diversification Increases Ethiopian Smallholders’ Food Security: Evidence from a Participatory Development Initiative," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    3. Felicetta Carillo & Francesco Caracciolo & Luigi Cembalo, 2017. "Do durum wheat producers benefit of vertical coordination?," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 5(1), pages 1-13, December.
    4. Marilena Furno & Francesco Caracciolo, 2020. "Multi-valued Double Robust quantile treatment effect," Empirical Economics, Springer, vol. 58(5), pages 2545-2571, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jespps:jes-02-2016-0026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.