IDEAS home Printed from https://ideas.repec.org/a/eme/jefasp/jefas-04-2020-0150.html
   My bibliography  Save this article

Determination of the world stock indices' co-movements by association rule mining

Author

Listed:
  • Burcu Kartal
  • Mehmet Fatih Sert
  • Melih Kutlu

Abstract

Purpose - This study aims to provide preliminary information to the investor by determining which indices co-movement, with the data mining method. Design/methodology/approach - In this context, data sets containing daily opening and closing prices between 2001 and 2019 have been created for 11 stock market indexes in the world. The association rule algorithm, one of the data mining techniques, is used in the analysis of the data. Findings - It is observed that the US stock market indices take part in the highest confidence levels between association rules. The XU100 stock index co-movement with both the European stock market indices and the US stock indices. In addition, the Hang Seng Index (HSI) (Hong Kong) takes part in the association rules of all stock market indices. Originality/value - The important issue for data sets is that the opening/closing values of the same day or the previous day are taken into account according to the open or closed status of other stock market indices by taking the opening time of the stock exchange index to be created. Therefore, data sets are arranged for each stock market index, separately. As a result of this data set arranging process, it is possible to find out co-movements of the stock market indexes. It is proof that the world stock indices have co-movement, and this continues as a cycle.

Suggested Citation

  • Burcu Kartal & Mehmet Fatih Sert & Melih Kutlu, 2022. "Determination of the world stock indices' co-movements by association rule mining," Journal of Economics, Finance and Administrative Science, Emerald Group Publishing Limited, vol. 27(54), pages 231-246, April.
  • Handle: RePEc:eme:jefasp:jefas-04-2020-0150
    DOI: 10.1108/JEFAS-04-2020-0150
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JEFAS-04-2020-0150/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JEFAS-04-2020-0150/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/JEFAS-04-2020-0150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakaria Boulanouar & Ghassane Benrhmach & Rihab Grassa & Sonia Abdennadher & Mariam Aldhaheri, 2024. "Exploring the predictive power of artificial neural networks in linking global Islamic indices with a local Islamic index," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.

    More about this item

    Keywords

    Data mining; Association rules; Stock market index; Global financial markets; C6; C8; G15;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jefasp:jefas-04-2020-0150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.