Author
Listed:
- Nara Rossetti
- Marcelo Seido Nagano
- Jorge Luis Faria Meirelles
Abstract
Purpose - This paper aims to analyse the volatility of the fixed income market from 11 countries (Brazil, Russia, India, China, South Africa, Argentina, Chile, Mexico, USA, Germany and Japan) from January 2000 to December 2011 by examining the interbank interest rates from each market. Design/methodology/approach - To the volatility of interest rates returns, the study used models of auto-regressive conditional heteroscedasticity, autoregressive conditional heteroscedasticity (ARCH), generalized autoregressive conditional heteroscedasticity (GARCH), exponential generalized autoregressive conditional heteroscedasticity (EGARCH), threshold generalized autoregressive conditional heteroscedasticity (TGARCH) and periodic generalized autoregressive conditional heteroscedasticity (PGARCH), and a combination of these with autoregressive integrated moving average (ARIMA) models, checking which of these processes were more efficient in capturing volatility of interest rates of each of the sample countries. Findings - The results suggest that for most markets, studied volatility is best modelled by asymmetric GARCH processes – in this case the EGARCH – demonstrating that bad news leads to a higher increase in the volatility of these markets than good news. In addition, the causes of increased volatility seem to be more associated with events occurring internally in each country, as changes in macroeconomic policies, than the overall external events. Originality/value - It is expected that this study has contributed to a better understanding of the volatility of interest rates and the main factors affecting this market. Propósito - Este estudio analiza la volatilidad del mercado de renta fija de once países (Brasil, Rusia, India, China, Sudáfrica, Argentina, Chile, México, Estados Unidos, Alemania y Japón) de enero de 2000 a diciembre de 2011, mediante el examen de las tasas de interés interbancarias de cada mercado. Diseño/metodología/enfoque - Para la volatilidad de los retornos de las tasas de interés, se utilizaron modelos de heteroscedasticidad condicional autorregresiva: ARCH, GARCH, EGARCH, TGARCH y PGARCH, y una combinación de estos con modelos ARIMA, comprobando cuáles de los procesos eran más eficientes para capturar la volatilidad de interés de cada uno de los países de la muestra. Hallazgos - Los resultados sugieren que para la mayoría de los mercados estudiados la volatilidad es mejor modelada por procesos GARCH asimétricos —en este caso el EGARCH— demostrando que las malas noticias conducen a un mayor incremento en la volatilidad de estos mercados que las buenas noticias. Además, las causas de una mayor volatilidad parecen estar más asociadas a eventos que ocurren internamente en cada país, como cambios en las políticas macroeconómicas, que los eventos externos generales. Originalidad/valor - Se espera que este estudio contribuya a un mejor entendimiento de la volatilidad de las tasas de interés y de los principales factores que afectan a este mercado. Palabras clave - Ingreso fijo, Volatilidad, Países emergentes, Modelos ARCH-GARCH Tipo de artículo - Artículo de investigación
Suggested Citation
Nara Rossetti & Marcelo Seido Nagano & Jorge Luis Faria Meirelles, 2017.
"A behavioral analysis of the volatility of interbank interest rates in developed and emerging countries,"
Journal of Economics, Finance and Administrative Science, Emerald Group Publishing Limited, vol. 22(42), pages 99-128, June.
Handle:
RePEc:eme:jefasp:jefas-02-2017-0033
DOI: 10.1108/JEFAS-02-2017-0033
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Muhammad Niaz Khan & Suzanne G. M. Fifield & David M. Power, 2024.
"The impact of the COVID 19 pandemic on stock market volatility: evidence from a selection of developed and emerging stock markets,"
SN Business & Economics, Springer, vol. 4(6), pages 1-26, June.
- Aslam, Faheem & Hunjra, Ahmed Imran & Memon, Bilal Ahmed & Zhang, Mingda, 2024.
"Interplay of multifractal dynamics between shadow policy rates and energy markets,"
The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jefasp:jefas-02-2017-0033. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.