Author
Listed:
- Qinxu Ding
- Ding Ding
- Yue Wang
- Chong Guan
- Bosheng Ding
Abstract
Purpose - The rapid rise of large language models (LLMs) has propelled them to the forefront of applications in natural language processing (NLP). This paper aims to present a comprehensive examination of the research landscape in LLMs, providing an overview of the prevailing themes and topics within this dynamic domain. Design/methodology/approach - Drawing from an extensive corpus of 198 records published between 1996 to 2023 from the relevant academic database encompassing journal articles, books, book chapters, conference papers and selected working papers, this study delves deep into the multifaceted world of LLM research. In this study, the authors employed the BERTopic algorithm, a recent advancement in topic modeling, to conduct a comprehensive analysis of the data after it had been meticulously cleaned and preprocessed. BERTopic leverages the power of transformer-based language models like bidirectional encoder representations from transformers (BERT) to generate more meaningful and coherent topics. This approach facilitates the identification of hidden patterns within the data, enabling authors to uncover valuable insights that might otherwise have remained obscure. The analysis revealed four distinct clusters of topics in LLM research: “language and NLP”, “education and teaching”, “clinical and medical applications” and “speech and recognition techniques”. Each cluster embodies a unique aspect of LLM application and showcases the breadth of possibilities that LLM technology has to offer. In addition to presenting the research findings, this paper identifies key challenges and opportunities in the realm of LLMs. It underscores the necessity for further investigation in specific areas, including the paramount importance of addressing potential biases, transparency and explainability, data privacy and security, and responsible deployment of LLM technology. Findings - The analysis revealed four distinct clusters of topics in LLM research: “language and NLP”, “education and teaching”, “clinical and medical applications” and “speech and recognition techniques”. Each cluster embodies a unique aspect of LLM application and showcases the breadth of possibilities that LLM technology has to offer. In addition to presenting the research findings, this paper identifies key challenges and opportunities in the realm of LLMs. It underscores the necessity for further investigation in specific areas, including the paramount importance of addressing potential biases, transparency and explainability, data privacy and security, and responsible deployment of LLM technology. Practical implications - This classification offers practical guidance for researchers, developers, educators, and policymakers to focus efforts and resources. The study underscores the importance of addressing challenges in LLMs, including potential biases, transparency, data privacy, and responsible deployment. Policymakers can utilize this information to shape regulations, while developers can tailor technology development based on the diverse applications identified. The findings also emphasize the need for interdisciplinary collaboration and highlight ethical considerations, providing a roadmap for navigating the complex landscape of LLM research and applications. Originality/value - This study stands out as the first to examine the evolution of LLMs across such a long time frame and across such diversified disciplines. It provides a unique perspective on the key areas of LLM research, highlighting the breadth and depth of LLM’s evolution.
Suggested Citation
Qinxu Ding & Ding Ding & Yue Wang & Chong Guan & Bosheng Ding, 2023.
"Unraveling the landscape of large language models: a systematic review and future perspectives,"
Journal of Electronic Business & Digital Economics, Emerald Group Publishing Limited, vol. 3(1), pages 3-19, December.
Handle:
RePEc:eme:jebdep:jebde-08-2023-0015
DOI: 10.1108/JEBDE-08-2023-0015
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jebdep:jebde-08-2023-0015. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.