Author
Listed:
- Imran Khan
- Darshita Fulara Gunwant
Abstract
Purpose - The purpose of this research is to develop a predictive model that can estimate the volume of remittances channeled toward Yemen’s economic reconstruction efforts. Design/methodology/approach - This study utilized a time-series dataset encompassing remittance inflows into Yemen’s economy from 1990 to 2022. The Box-Jenkins autoregressive integrated moving average (ARIMA) methodology was employed to forecast remittance inflows for the period 2023 to 2030. Findings - The study’s findings indicate a downward trajectory in remittance inflows over the next eight years, with projections suggesting a potential decline to 4.122% of Yemen’s gross domestic product by the end of 2030. This significant decrease in remittance inflows highlights the immediate need for concrete steps from economic policymakers to curb the potential decline in remittance inflows and its impact on Yemen’s economic recovery efforts. Originality/value - The impact of global remittance inflows on various macroeconomic and microeconomic factors has long been of interest to researchers, policymakers, and academics. Yemen has been embroiled in violent clashes over a decade, leading to a fragmentation of central authority and the formation of distinct local alliances. In such prolonged turmoil, foreign aid often falls short, providing only temporary relief for basic needs. Consequently, the importance of migrant remittances in sustaining communities affected by conflict and disasters has increased. Remittances have played a crucial role in fostering economic progress and improving social services for families transitioning from conflict to peace. Therefore, this study aims to estimate and forecast the volume of remittances flowing into Yemen, to assist in the nation’s economic reconstruction.
Suggested Citation
Imran Khan & Darshita Fulara Gunwant, 2024.
"“Revealing the future”: an ARIMA model analysis for predicting remittance inflows,"
Journal of Business and Socio-economic Development, Emerald Group Publishing Limited, vol. 5(2), pages 155-170, June.
Handle:
RePEc:eme:jbsedp:jbsed-07-2023-0055
DOI: 10.1108/JBSED-07-2023-0055
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jbsedp:jbsed-07-2023-0055. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.