IDEAS home Printed from https://ideas.repec.org/a/eme/jamrpp/v11y2014i1p4-19.html
   My bibliography  Save this article

Efficiency in the Indian iron and steel industry – an application of data envelopment analysis

Author

Listed:
  • Roma Mitra Debnath
  • V.J. Sebastian

Abstract

Purpose - – The purpose of this paper applies to Indian steel manufacturing industries to evaluate the technical and scale efficiency (SE). Design/methodology/approach - – Data envelopment analysis (DEA) has been employed to calculate the relative efficiency of the steel manufacturing units. The selection criteria for the inclusion of a steel manufacturing unit in the analysis has been annual income of more than 50 crores and units manufacturing pig iron, steel and sponge iron. Within the DEA framework, the output-oriented model with constant returns to scale and variable returns to scale were studied. Four input variables, namely, gross fixed assets, total energy cost, total number of employees and currents assets were considered. Among the output variables, the four variables considered are income, sales, PBIT and PAT. Findings - – The result of the efficiency scores have been categorized into three parts. The pure technical efficiency represents local efficiency and the reason of inefficiency is due to inefficient operations. Technical efficiency indicates that the respective decision-making units are globally efficient in case the efficiency is 100 per cent. The SE explains that the inefficiency is caused by disadvantageous conditions. As the result shows, that public sector undertaking (PSUs) are operating under disadvantageous conditions as compared to private manufacturing units. One of the possible reasons of location disadvantage condition is manufacturing units for PSUs are scattered throughout India. Some of the units are located in such places where, the raw material, supply chain could be difficult. It has been found that 45 per cent of the private manufacturing units are technically as well as scale inefficient units. Practical implications - – The result of the study would benefit the steel industry to develop a performance benchmarking as steel companies must be profitable in the long term to ensure sustainable achievements. Originality/value - – This is an original study to apply DEA to get insights on productivity efficiency of the steel manufacturing units in India. Though the manufacturing units were selected on the basis of annual income, the analysis of productivity does not reflect any impact of income on the efficiency of the manufacturing firms.

Suggested Citation

  • Roma Mitra Debnath & V.J. Sebastian, 2014. "Efficiency in the Indian iron and steel industry – an application of data envelopment analysis," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 11(1), pages 4-19, April.
  • Handle: RePEc:eme:jamrpp:v:11:y:2014:i:1:p:4-19
    DOI: 10.1108/JAMR-01-2013-0005
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JAMR-01-2013-0005/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JAMR-01-2013-0005/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JAMR-01-2013-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Pourjavad & Rene V. Mayorga, 2019. "A comparative study and measuring performance of manufacturing systems with Mamdani fuzzy inference system," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1085-1097, March.
    2. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & He, Jianfei & Yuan, Yuxing & Yan, Tianyi & Du, Tao, 2021. "A novel evaluation method for energy efficiency of process industry — A case study of typical iron and steel manufacturing process," Energy, Elsevier, vol. 233(C).
    3. Ha Sung Park & Tae Youn Kim & Daecheol Kim, 2019. "Efficiency Analysis of Zinc Refining Companies," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    4. Nielsen, Hana, 2017. "Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1732-1743.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jamrpp:v:11:y:2014:i:1:p:4-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.