IDEAS home Printed from https://ideas.repec.org/a/eme/imefmp/imefm-06-2015-0071.html
   My bibliography  Save this article

Portfolio optimization using the generalized reduced gradient nonlinear algorithm

Author

Listed:
  • Dima Waleed Hanna Alrabadi

Abstract

Purpose - This study aims to utilize the mean–variance optimization framework of Markowitz (1952) and the generalized reduced gradient (GRG) nonlinear algorithm to find the optimal portfolio that maximizes return while keeping risk at minimum. Design/methodology/approach - This study applies the portfolio optimization concept of Markowitz (1952) and the GRG nonlinear algorithm to a portfolio consisting of the 30 leading stocks from the three different sectors in Amman Stock Exchange over the period from 2009 to 2013. Findings - The selected portfolios achieve a monthly return of 5 per cent whilst keeping risk at minimum. However, if the short-selling constraint is relaxed, the monthly return will be 9 per cent. Moreover, the GRG nonlinear algorithm enables to construct a portfolio with a Sharpe ratio of 7.4. Practical implications - The results of this study are vital to both academics and practitioners, specifically the Arab and Jordanian investors. Originality/value - To the best of the author’s knowledge, this is the first study in Jordan and in the Arab world that constructs optimum portfolios based on the mean–variance optimization framework of Markowitz (1952) and the GRG nonlinear algorithm.

Suggested Citation

  • Dima Waleed Hanna Alrabadi, 2016. "Portfolio optimization using the generalized reduced gradient nonlinear algorithm," International Journal of Islamic and Middle Eastern Finance and Management, Emerald Group Publishing Limited, vol. 9(4), pages 570-582, November.
  • Handle: RePEc:eme:imefmp:imefm-06-2015-0071
    DOI: 10.1108/IMEFM-06-2015-0071
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IMEFM-06-2015-0071/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IMEFM-06-2015-0071/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IMEFM-06-2015-0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:imefmp:imefm-06-2015-0071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.