IDEAS home Printed from https://ideas.repec.org/a/eme/ijoesp/ijoes-12-2018-0185.html
   My bibliography  Save this article

Crypto-currencies narrated on tweets: a sentiment analysis approach

Author

Listed:
  • Saeed Rouhani
  • Ehsan Abedin

Abstract

Purpose - Crypto-currencies, decentralized electronic currencies systems, denote a radical change in financial exchange and economy environment. Consequently, it would be attractive for designers and policy-makers in this area to make out what social media users think about them on Twitter. The purpose of this study is to investigate the social opinions about different kinds of crypto-currencies and tune the best-customized classification technique to categorize the tweets based on sentiments. Design/methodology/approach - This paper utilized a lexicon-based approach for analyzing the reviews on a wide range of crypto-currencies over Twitter data to measure positive, negative or neutral sentiments; in addition, the end result of sentiments played a training role to train a supervised technique, which can predict the sentiment loading of tweets about the main crypto-currencies. Findings - The findings further prove that more than 50 per cent of people have positive beliefs about crypto-currencies. Furthermore, this paper confirms that marketers can predict the sentiment of tweets about these crypto-currencies with high accuracy if they use appropriate classification techniques like support vector machine (SVM). Practical implications - Considering the growing interest in crypto-currencies (Bitcoin, Cardano, Ethereum, Litcoin and Ripple), the findings of this paper have a remarkable value for enterprises in the financial area to obtain the promised benefits of social media analysis at work. In addition, this paper helps crypto-currencies vendors analyze public opinion in social media platforms. In this sense, the current paper strengthens our understanding of what happens in social media for crypto-currencies. Originality/value - For managers and decision-makers, this paper suggests that the news and campaign for their crypto in Twitter would affect people’s perspectives in a good manner. Because of this fact, the firms, investing in these crypto-currencies, could apply the social media as a magnifier for their promotional activities. The findings steer the market managers to see social media as a predictor tool, which can analyze the market through understanding the opinions of users of Twitter.

Suggested Citation

  • Saeed Rouhani & Ehsan Abedin, 2019. "Crypto-currencies narrated on tweets: a sentiment analysis approach," International Journal of Ethics and Systems, Emerald Group Publishing Limited, vol. 36(1), pages 58-72, October.
  • Handle: RePEc:eme:ijoesp:ijoes-12-2018-0185
    DOI: 10.1108/IJOES-12-2018-0185
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJOES-12-2018-0185/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJOES-12-2018-0185/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJOES-12-2018-0185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    2. Moser, Stefanie & Brauneis, Alexander, 2023. "Should you listen to crypto YouTubers?," Finance Research Letters, Elsevier, vol. 54(C).
    3. Prodan Silvana & Dabija Dan-Cristian & Marincean Leonardo, 2023. "Exploring Consumer Sentiment on Central Bank Digital Currencies: A Twitter Analysis from 2021 to 2023," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 1085-1102, July.
    4. Rasoul Amirzadeh & Asef Nazari & Dhananjay Thiruvady & Mong Shan Ee, 2023. "Modelling Determinants of Cryptocurrency Prices: A Bayesian Network Approach," Papers 2303.16148, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijoesp:ijoes-12-2018-0185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.