IDEAS home Printed from https://ideas.repec.org/a/eme/ijoemp/ijoem-05-2020-0577.html
   My bibliography  Save this article

Inflation forecasting in an emerging economy: selecting variables with machine learning algorithms

Author

Listed:
  • Önder Özgür
  • Uğur Akkoç

Abstract

Purpose - The main purpose of this study is to forecast inflation rates in the case of the Turkish economy with shrinkage methods of machine learning algorithms. Design/methodology/approach - This paper compares the predictive ability of a set of machine learning techniques (ridge, lasso, ada lasso and elastic net) and a group of benchmark specifications (autoregressive integrated moving average (ARIMA) and multivariate vector autoregression (VAR) models) on the extensive dataset. Findings - Results suggest that shrinkage methods perform better for variable selection. It is also seen that lasso and elastic net algorithms outperform conventional econometric methods in the case of Turkish inflation. These algorithms choose the energy production variables, construction-sector measure, reel effective exchange rate and money market indicators as the most relevant variables for inflation forecasting. Originality/value - Turkish economy that is a typical emerging country has experienced two digit and high volatile inflation regime starting with the year 2017. This study contributes to the literature by introducing the machine learning techniques to forecast inflation in the Turkish economy. The study also compares the relative performance of machine learning techniques and different conventional methods to predict inflation in the Turkish economy and provide the empirical methodology offering the best predictive performance among their counterparts.

Suggested Citation

  • Önder Özgür & Uğur Akkoç, 2021. "Inflation forecasting in an emerging economy: selecting variables with machine learning algorithms," International Journal of Emerging Markets, Emerald Group Publishing Limited, vol. 17(8), pages 1889-1908, February.
  • Handle: RePEc:eme:ijoemp:ijoem-05-2020-0577
    DOI: 10.1108/IJOEM-05-2020-0577
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJOEM-05-2020-0577/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJOEM-05-2020-0577/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJOEM-05-2020-0577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivașcu Codruț, 2023. "Can Machine Learning Models Predict Inflation?," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 1748-1756, July.
    2. Oleg Semiturkin & Andrey Shevelev, 2023. "Correct Comparison of Predictive Features of Machine Learning Models: The Case of Forecasting Inflation Rates in Siberia," Russian Journal of Money and Finance, Bank of Russia, vol. 82(1), pages 87-103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijoemp:ijoem-05-2020-0577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.