IDEAS home Printed from https://ideas.repec.org/a/eme/ijhmap/v8y2015i1p135-147.html
   My bibliography  Save this article

ARIMA modelling of Lithuanian house price index

Author

Listed:
  • Arvydas Jadevicius
  • Simon Huston

Abstract

Purpose - – This paper aims to investigate Lithuanian house price changes. Its twin motivations are the importance of information on future house price movements to sector stakeholders and the limited number of related Lithuanian property market studies. Design/methodology/approach - – The study employs ARIMA modelling approach. It assesses whether past is a good predictor of the future. It then examines issues relating to an application of this univariate time-series modelling technique in a forecasting context. Findings - – As the results of the study suggest, ARIMA is a useful technique to assess broad market price changes. Government and central bank can use ARIMA modelling approach to forecast national house price inflation. Developers can employ this methodology to drive successful house-building programme. Investor can incorporate forecasts from ARIMA models into investment strategy for timing purposes. Research limitations/implications - – Certainly, there are number of limitations attached to this particular modelling approach. Firm predictions about house price movements are also a challenge, as well as more research needs to be done in establishing a dynamic interrelationship between macro variables and the Lithuanian housing market. Originality/value - – Although the research focused on Lithuania, the findings extend to global housing market. ARIMA house price modelling provides insights for a spectrum of stakeholders. The use of this modelling approach can be employed to improve monetary policy oversight, facilitate planning for infrastructure or social housing as a countercyclical policy and mitigate risk for investors. What is more, a greater appreciation of Lithuania housing market can act as a bellwether for real estate markets in other trade-exposed small country economies.

Suggested Citation

  • Arvydas Jadevicius & Simon Huston, 2015. "ARIMA modelling of Lithuanian house price index," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 8(1), pages 135-147, March.
  • Handle: RePEc:eme:ijhmap:v:8:y:2015:i:1:p:135-147
    DOI: 10.1108/IJHMA-04-2014-0010
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJHMA-04-2014-0010/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJHMA-04-2014-0010/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJHMA-04-2014-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yener Coskun & Unal Seven & H. Murat Ertugrul & Ali Alp, 2020. "Housing price dynamics and bubble risk: the case of Turkey," Housing Studies, Taylor & Francis Journals, vol. 35(1), pages 50-86, January.
    2. Marco Locurcio & Pierluigi Morano & Francesco Tajani & Felicia Di Liddo, 2020. "An Innovative GIS-Based Territorial Information Tool for the Evaluation of Corporate Properties: An Application to the Italian Context," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    3. Jaekyung Lee & Hyunwoo Kim & Hyungkyoo Kim, 2021. "Commercial Vacancy Prediction Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijhmap:v:8:y:2015:i:1:p:135-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.