IDEAS home Printed from https://ideas.repec.org/a/eme/ijhmap/ijhma-09-2019-0097.html
   My bibliography  Save this article

House price estimation using an eigenvector spatial filtering approach

Author

Listed:
  • Michael James McCord
  • John McCord
  • Peadar Thomas Davis
  • Martin Haran
  • Paul Bidanset

Abstract

Purpose - Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an under-researched approach within house price studies. This paper aims to examine the spatial distribution of house prices using an eigenvector spatial filtering (ESF) procedure, to analyse the local variation and spatial heterogeneity. Design/methodology/approach - Using 2,664 sale transactions over the one year period Q3 2017 to Q3 2018, an eigenvector spatial filtering approach is applied to evaluate spatial patterns within the Belfast housing market. This method consists of using geographical coordinates to specify eigenvectors across geographic distance to determine a set of spatial filters. These convey spatial structures representative of different spatial scales and units. The filters are incorporated as predictors into regression analyses to alleviate spatial autocorrelation. This approach is intuitive, given that detection of autocorrelation in specific filters and within the regression residuals can be markers for exclusion or inclusion criteria. Findings - The findings show both robust and effective estimator consistency and limited spatial dependency – culminating in accurately specified hedonic pricing models. The findings show that the spatial component alone explains 14.6 per cent of the variation in property value, whereas 77.6 per cent of the variation could be attributed to an interaction between the structural characteristics and the local market geography expressed by the filters. This methodological step reduced short-scale spatial dependency and residual autocorrelation resulting in increased model stability and reduced misspecification error. Originality/value - Eigenvector-based spatial filtering is a less known but suitable statistical protocol that can be used to analyse house price patterns taking into account spatial autocorrelation at varying (different) spatial scales. This approach arguably provides a more insightful analysis of house prices by removing spatial autocorrelation both objectively and subjectively to produce reliable, yet understandable, regression models, which do not suffer from traditional challenges of serial dependence or spatial mis-specification. This approach offers property researchers and policymakers an intuitive but comprehensible approach for producing accurate price estimation models, which can be readily interpreted.

Suggested Citation

  • Michael James McCord & John McCord & Peadar Thomas Davis & Martin Haran & Paul Bidanset, 2019. "House price estimation using an eigenvector spatial filtering approach," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 13(5), pages 845-867, December.
  • Handle: RePEc:eme:ijhmap:ijhma-09-2019-0097
    DOI: 10.1108/IJHMA-09-2019-0097
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJHMA-09-2019-0097/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJHMA-09-2019-0097/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJHMA-09-2019-0097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijhmap:ijhma-09-2019-0097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.