IDEAS home Printed from https://ideas.repec.org/a/eme/ejmbep/ejmbe-06-2022-0176.html
   My bibliography  Save this article

Machine learning algorithms applied to the estimation of liquidity: the 10-year United States treasury bond

Author

Listed:
  • Ignacio Manuel Luque Raya
  • Pablo Luque Raya

Abstract

Purpose - Having defined liquidity, the aim is to assess the predictive capacity of its representative variables, so that economic fluctuations may be better understood. Design/methodology/approach - Conceptual variables that are representative of liquidity will be used to formulate the predictions. The results of various machine learning models will be compared, leading to some reflections on the predictive value of the liquidity variables, with a view to defining their selection. Findings - The predictive capacity of the model was also found to vary depending on the source of the liquidity, in so far as the data on liquidity within the private sector contributed more than the data on public sector liquidity to the prediction of economic fluctuations. International liquidity was seen as a more diffuse concept, and the standardization of its definition could be the focus of future studies. A benchmarking process was also performed when applying the state-of-the-art machine learning models. Originality/value - Better understanding of these variables might help us toward a deeper understanding of the operation of financial markets. Liquidity, one of the key financial market variables, is neither well-defined nor standardized in the existing literature, which calls for further study. Hence, the novelty of an applied study employing modern data science techniques can provide a fresh perspective on financial markets. 流動資金,無論是在金融市場方面,抑或是在實體經濟方面,均為市場趨勢最明確的預報因素之一 - 因此,就了解經濟週期和經濟發展而言,流動資金是一個極其重要的概念。本研究擬在安全資產的價格預測方面取得進步。安全資產代表了經濟的實際情況,特別是美國的十年期國債。 研究目的 - 流動資金的定義上面已說明了; 為進一步了解經濟波動,本研究擬對流動資金代表性變量的預測能力進行評估。 研究方法 - 研究使用作為流動資金代表的概念變項去規劃預測。各機器學習模型的結果會作比較,這會帶來對流動資金變量的預測值的深思,而深思的目的是確定其選擇。 研究結果 - 只要在私營部門內流動資金的數據比公營部門的流動資金數據、在預測經濟波動方面貢獻更大時,我們發現、模型的預測能力也會依賴流動資金的來源而存在差異。國際流動資金被視為一個晦澀的概念,而它的定義的標準化,或許應是未來學術研究的焦點。當應用最先進的機器學習模型時,標桿分析法的步驟也施行了。 研究的原創性 - 若我們對有關的變量加深認識,我們就可更深入地理解金融市場的運作。流動資金,雖是金融市場中一個極其重要的變量,但在現存的學術文獻裏,不但沒有明確的定義,而且也沒有被標準化; 就此而言,未來的研究或許可在這方面作進一步的探討。因此,本研究為富有新穎思維的應用研究,研究使用了現代數據科學技術,這可為探討金融市場提供一個全新的視角。

Suggested Citation

  • Ignacio Manuel Luque Raya & Pablo Luque Raya, 2023. "Machine learning algorithms applied to the estimation of liquidity: the 10-year United States treasury bond," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 33(3), pages 341-365, June.
  • Handle: RePEc:eme:ejmbep:ejmbe-06-2022-0176
    DOI: 10.1108/EJMBE-06-2022-0176
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/EJMBE-06-2022-0176/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/EJMBE-06-2022-0176/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/EJMBE-06-2022-0176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ejmbep:ejmbe-06-2022-0176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.