IDEAS home Printed from https://ideas.repec.org/a/eme/cfripp/cfri-06-2023-0175.html
   My bibliography  Save this article

Investor sentiment and the NFT hype index: to buy or not to buy?

Author

Listed:
  • Valeriia Baklanova
  • Aleksei Kurkin
  • Tamara Teplova

Abstract

Purpose - The primary objective of this research is to provide a precise interpretation of the constructed machine learning model and produce definitive summaries that can evaluate the influence of investor sentiment on the overall sales of non-fungible token (NFT) assets. To achieve this objective, the NFT hype index was constructed as well as several approaches of XAI were employed to interpret Black Box models and assess the magnitude and direction of the impact of the features used. Design/methodology/approach - The research paper involved the construction of a sentiment index termed the NFT hype index, which aims to measure the influence of market actors within the NFT industry. This index was created by analyzing written content posted by 62 high-profile individuals and opinion leaders on the social media platform Twitter. The authors collected posts from the Twitter accounts that were afterward classified by tonality with a help of natural language processing model VADER. Then the machine learning methods and XAI approaches (feature importance, permutation importance and SHAP) were applied to explain the obtained results. Findings - The built index was subjected to rigorous analysis using the gradient boosting regressor model and explainable AI techniques, which confirmed its significant explanatory power. Remarkably, the NFT hype index exhibited a higher degree of predictive accuracy compared to the well-known sentiment indices. Practical implications - The NFT hype index, constructed from Twitter textual data, functions as an innovative, sentiment-based indicator for investment decision-making in the NFT market. It offers investors unique insights into the market sentiment that can be used alongside conventional financial analysis techniques to enhance risk management, portfolio optimization and overall investment outcomes within the rapidly evolving NFT ecosystem. Thus, the index plays a crucial role in facilitating well-informed, data-driven investment decisions and ensuring a competitive edge in the digital assets market. Originality/value - The authors developed a novel index of investor interest for NFT assets (NFT hype index) based on text messages posted by market influencers and compared it to conventional sentiment indices in terms of their explanatory power. With the application of explainable AI, it was shown that sentiment indices may perform as significant predictors for NFT sales and that the NFT hype index works best among all sentiment indices considered.

Suggested Citation

  • Valeriia Baklanova & Aleksei Kurkin & Tamara Teplova, 2023. "Investor sentiment and the NFT hype index: to buy or not to buy?," China Finance Review International, Emerald Group Publishing Limited, vol. 14(3), pages 522-548, December.
  • Handle: RePEc:eme:cfripp:cfri-06-2023-0175
    DOI: 10.1108/CFRI-06-2023-0175
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/CFRI-06-2023-0175/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/CFRI-06-2023-0175/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/CFRI-06-2023-0175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Non-fungible tokens (NFT); Investor sentiment indices; Natural language processing; Text analysis; Explainable artificial intelligence; C53; F37; G17; G41;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:cfripp:cfri-06-2023-0175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.