IDEAS home Printed from https://ideas.repec.org/a/eme/caerpp/caer-03-2022-0051.html
   My bibliography  Save this article

Comparison of machine learning predictions of subjective poverty in rural China

Author

Listed:
  • Lucie Maruejols
  • Hanjie Wang
  • Qiran Zhao
  • Yunli Bai
  • Linxiu Zhang

Abstract

Purpose - Despite rising incomes and reduction of extreme poverty, the feeling of being poor remains widespread. Support programs can improve well-being, but they first require identifying who are the households that judge their income is insufficient to meet their basic needs, and what factors are associated with subjective poverty. Design/methodology/approach - Households report the income level they judge is sufficient to make ends meet. Then, they are classified as being subjectively poor if their own monetary income is inferior to the level they indicated. Second, the study compares the performance of three machine learning algorithms, the random forest, support vector machines and least absolute shrinkage and selection operator (LASSO) regression, applied to a set of socioeconomic variables to predict subjective poverty status. Findings - The random forest generates 85.29% of correct predictions using a range of income and non-income predictors, closely followed by the other two techniques. For the middle-income group, the LASSO regression outperforms random forest. Subjective poverty is mostly associated with monetary income for low-income households. However, a combination of low income, low endowment (land, consumption assets) and unusual large expenditure (medical, gifts) constitutes the key predictors of feeling poor for the middle-income households. Practical implications - To reduce the feeling of poverty, policy intervention should continue to focus on increasing incomes. However, improvements in nonincome domains such as health expenditure, education and family demographics can also relieve the feeling of income inadequacy. Methodologically, better performance of either algorithm depends on the data at hand. Originality/value - For the first time, the authors show that prediction techniques are reliable to identify subjective poverty prevalence, with example from rural China. The analysis offers specific attention to the modest-income households, who may feel poor but not be identified as such by objective poverty lines, and is relevant when policy-makers seek to address the “next step” after ending extreme poverty. Prediction performance and mechanisms for three machine learning algorithms are compared.

Suggested Citation

  • Lucie Maruejols & Hanjie Wang & Qiran Zhao & Yunli Bai & Linxiu Zhang, 2022. "Comparison of machine learning predictions of subjective poverty in rural China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 15(2), pages 379-399, September.
  • Handle: RePEc:eme:caerpp:caer-03-2022-0051
    DOI: 10.1108/CAER-03-2022-0051
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/CAER-03-2022-0051/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/CAER-03-2022-0051/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/CAER-03-2022-0051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hanjie & Feil, Jan-Henning & Yu, Xiaohua, 2023. "Let the data speak about the cut-off values for multidimensional index: Classification of human development index with machine learning," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    2. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:caerpp:caer-03-2022-0051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.