Author
Listed:
- Abby Yaqing Zhang
- Joseph H. Zhang
Abstract
Purpose - Environmental, social and governance (ESG) factors have become increasingly important in investment decisions, leading to a surge in ESG investing and the rise of sustainable investment assets. Nevertheless, challenges in ESG disclosure, such as quantifying unstructured data, lack of guidelines and comparability, rampantly exist. ESG rating agencies play a crucial role in assessing corporate ESG performance, but concerns over their credibility and reliability persist. To address these issues, researchers are increasingly utilizing machine learning (ML) tools to enhance ESG reporting and evaluation. By leveraging ML, accounting practitioners and researchers gain deeper insights into the relationship between ESG practices and financial performance, offering a more data-driven understanding of ESG impacts on business communities. Design/methodology/approach - The authors review the current research on ESG disclosure and ESG performance disagreement, followed by the review of current ESG research with ML tools in three areas: connecting ML with ESG disclosures, integrating ML with ESG rating disagreement and employing ML with ESG in other settings. By comparing different research's ML applications in ESG research, the authors conclude the positive and negative sides of those research studies. Findings - The practice of ESG reporting and assurance is on the rise, but still in its technical infancy. ML methods offer advantages over traditional approaches in accounting, efficiently handling large, unstructured data and capturing complex patterns, contributing to their superiority. ML methods excel in prediction accuracy, making them ideal for tasks like fraud detection and financial forecasting. Their adaptability and feature interaction capabilities make them well-suited for addressing diverse and evolving accounting problems, surpassing traditional methods in accuracy and insight. Originality/value - The authors broadly review the accounting research with the ML method in ESG-related issues. By emphasizing the advantages of ML compared to traditional methods, the authors offer suggestions for future research in ML applications in ESG-related fields.
Suggested Citation
Abby Yaqing Zhang & Joseph H. Zhang, 2023.
"Renovation in environmental, social and governance (ESG) research: the application of machine learning,"
Asian Review of Accounting, Emerald Group Publishing Limited, vol. 32(4), pages 554-572, November.
Handle:
RePEc:eme:arapps:ara-07-2023-0201
DOI: 10.1108/ARA-07-2023-0201
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:arapps:ara-07-2023-0201. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.