IDEAS home Printed from https://ideas.repec.org/a/eme/afrpps/v73y2013i3p469-492.html
   My bibliography  Save this article

The use of copulas in explaining crop yield dependence structures for use in geographic diversification

Author

Listed:
  • Ryan Larsen
  • James W. Mjelde
  • Danny Klinefelter
  • Jared Wolfley

Abstract

Purpose - – What copulas are, their estimation, and use is illustrated using a geographical diversification example. To accomplish this, dependencies between county-level yields are calculated for non-irrigated wheat, upland cotton, and sorghum using Pearson linear correlation and Kendall's tau. The use of Kendall's tau allows the implementation of copulas to estimate the dependency between county-level yields. The paper aims to discuss these issues. Design/methodology/approach - – Four parametric copulas, Gaussian, Frank, Clayton, and Gumbel, are used to estimate Kendall's tau. These four estimates of Kendall's tau are compared to Pearson's linear correlation, a more typical measure of dependence. Using this information, functions are estimated to determine the relationships between dependencies and changes in geographic and climate data. Findings - – The effect on county-level crop yields based on changes of geographical and climate variables differed among the different dependency measures among the three different crops. Implementing alternative dependency measures changed the statistical significance and the signs of the coefficients in the sorghum and cotton dependence functions. Copula-based elasticities are consistently less than the linear correlation elasticities for wheat and cotton. For sorghum, however, the copula-based elasticities are generally larger. The results indicate that one should not take the issue of measuring dependence as a trivial matter. Originality/value - – This research not only extends the current literature on geographical diversification by taking a more detailed examination of factors impacting yield dependence, but also extends the copula literature by comparing estimation results using linear correlation and copula-based rank correlation.

Suggested Citation

  • Ryan Larsen & James W. Mjelde & Danny Klinefelter & Jared Wolfley, 2013. "The use of copulas in explaining crop yield dependence structures for use in geographic diversification," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 73(3), pages 469-492, November.
  • Handle: RePEc:eme:afrpps:v:73:y:2013:i:3:p:469-492
    DOI: 10.1108/AFR-02-2012-0005
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/AFR-02-2012-0005/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/AFR-02-2012-0005/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/AFR-02-2012-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songjiao Chen & William Wilson & Ryan Larsen & Bruce Dahl, 2016. "Risk Management for Grain Processors and “Copulas”," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 365-382, June.
    2. Franziska Gaupp & Georg Pflug & Stefan Hochrainer‐Stigler & Jim Hall & Simon Dadson, 2017. "Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the Assessment of Global and Regional Risk Pools," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2212-2228, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:afrpps:v:73:y:2013:i:3:p:469-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.