IDEAS home Printed from https://ideas.repec.org/a/ejw/journl/v18y2021i2p230-234.html
   My bibliography  Save this article

Rejoinder to the Critique of an Article on Machine Learning in the Detection of Accounting Fraud

Author

Listed:
  • Stephen Walker

Abstract

This is a rejoinder to the reply by Yang Bao, Bin Ke, Bin Li, Y. Julia Yu, and Jie Zhang to my article “Critique of an Article on Machine Learning in the Detection of Accounting Fraud,” published in Econ Journal Watch in March 2021. Here I explain why the authors’ reply did not address the fundamental issue raised in my critique, which asked for a reasonable justification as to why fraud identifiers were changed for select observations in the sample—a choice that was undisclosed in the original publication, and one that contradicted the logic presented in their paper. That change was critical. Without it, their publication failed to improve upon prior literature in the detection of accounting fraud.

Suggested Citation

  • Stephen Walker, 2021. "Rejoinder to the Critique of an Article on Machine Learning in the Detection of Accounting Fraud," Econ Journal Watch, Econ Journal Watch, vol. 18(2), pages 230–234-2, September.
  • Handle: RePEc:ejw:journl:v:18:y:2021:i:2:p:230-234
    as

    Download full text from publisher

    File URL: https://econjwatch.org/File+download/1199/WalkerSept2021.pdf?mimetype=pdf
    Download Restriction: no

    File URL: https://econjwatch.org/1246
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Jahidur Rahman & Hongtao Zhu, 2023. "Predicting accounting fraud using imbalanced ensemble learning classifiers – evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(3), pages 3455-3486, September.
    2. Stephen Walker, 2022. "Erroneous Erratum to Accounting Fraud Article," Econ Journal Watch, Econ Journal Watch, vol. 19(2), pages 190–203-1, September.

    More about this item

    Keywords

    training set; machine learning; serial fraud;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ejw:journl:v:18:y:2021:i:2:p:230-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jason Briggeman (email available below). General contact details of provider: https://edirc.repec.org/data/edgmuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.