IDEAS home Printed from https://ideas.repec.org/a/ege/journl/v17y2017i4p461-479.html
   My bibliography  Save this article

LR, C5.0, CART, DVM Yöntemlerini Kullanarak Hisse Senedi Getiri Siniflandirma Tahmini Yapilmasi ve Kullanilan Yöntemlerin Karsilastirilmasi: Türkiye’de BIST’de Bir Uygulama

Author

Listed:
  • Emre YAKUT

    (Osmaniye Korkut Ata Üniversitesi)

  • Eray GEMICI

    (Gaziantep Üniversitesi)

Abstract

Hisse senedi getiri siniflandirma tahmini her zaman icin yatirimcilarin ve analizcilerin ilgisini ceken bir arastirma alani olmustur. Bu calismada BIST 100 endeksinde islem gören kimya, kaucuk ve plastik ürünleri imalati sanayinde yer alan, faaliyetleri 2009- 2014 yillari arasinda süreklilik gösteren 18 sirketin hisse senedi getirilerinde etkili olan faktörler belirlenerek, hisse senedi getirileri tahmin edilmeye çalisilmistir. Söz konusu verilerin veri madenciligi yöntemlerinden olan LR analiz, C5.0 algoritmasi, CART algoritmasi ve DVM yöntemleri kullanilarak analiz islemleri gerceklestirilmis, hisse senedi getiri siniflandirma tahmininde anlamli ve faydali bilgileri ortaya cikarmak için karar agacina ait kurallar elde edilmistir. Yapilan analizler sonucunda LR analizi %75, C5.0 algoritmasi %88, CART algoritmasi %89,8 ve DVM analizi %75,9’luk dogru siniflandirma basarisi gerceklestirmistir. Pozitif ve negatif hisse senedi getiri siniflandirma tahminine etki eden en önemli degiskenlerin “piyasa/defter degeri degiskeni”, “TÜFE degiskeni” ve “brüt kar marji degiskeni” oldugu saptanmistir. Yatirimcilar ve analizciler için önerdigimiz modelin degiskenleri ile birlikte hisse senedi getiri tahmininde kullanilmasinin uygun olabilecegi gözlenmistir.

Suggested Citation

  • Emre YAKUT & Eray GEMICI, 2017. "LR, C5.0, CART, DVM Yöntemlerini Kullanarak Hisse Senedi Getiri Siniflandirma Tahmini Yapilmasi ve Kullanilan Yöntemlerin Karsilastirilmasi: Türkiye’de BIST’de Bir Uygulama," Ege Academic Review, Ege University Faculty of Economics and Administrative Sciences, vol. 17(4), pages 461-479.
  • Handle: RePEc:ege:journl:v:17:y:2017:i:4:p:461-479
    DOI: 10.21121/eab.2017431296
    as

    Download full text from publisher

    File URL: http://www.onlinedergi.com/MakaleDosyalari/51/PDF2017_4_2.pdf
    Download Restriction: no

    File URL: http://www.onlinedergi.com/eab/arsiv/arsivDetay.aspx?yil=2017&peryot=4
    File Function: Website of the journal issue
    Download Restriction: no

    File URL: https://libkey.io/10.21121/eab.2017431296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ege:journl:v:17:y:2017:i:4:p:461-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Baris Gök (email available below). General contact details of provider: https://edirc.repec.org/data/iiegetr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.