IDEAS home Printed from https://ideas.repec.org/a/efp/journl/v5y2022i1p73-98.html
   My bibliography  Save this article

Clasificación de la Pobreza en Bolivia, Utilizando Random Forest y XGBoost

Author

Listed:
  • Cristian Paucara

    (Universidad de Buenos Aires (UBA))

Abstract

El objetivo del presente trabajo es clasificar a los hogares bolivianos como pobres o no pobres, prescindiendo del ingreso monetario como variable explicativa. Este resultado es importante para identificar los hogares que probablemente han sido clasificados incorrectamente. Para este objetivo se recurre a dos modelos de machine learning: random forest y XGBoost, siendo este último el que presenta un mejor rendimiento, especialmente cuando se aplica técnicas de submuestreo. Los modelos se construyen con datos de la Encuesta de Hogares de Bolivia de 2021, dejando de lado el ingreso monetario. El modelo XGBoost, aplicando submuestreo, alcanza una tasa de aciertos del 0,77. Según este último modelo, entre las variables más relevantes que ayudan a clasificar la pobreza se encuentran: cantidad de miembros del hogar desocupados, cantidad de niños menores de 12 años dentro del hogar, ocupación del jefe de hogar, departamento de residencia, gastos del hogar, analfabetismo, entre otros.

Suggested Citation

  • Cristian Paucara, 2022. "Clasificación de la Pobreza en Bolivia, Utilizando Random Forest y XGBoost," Cuadernos de Investigación Económica Boliviana, Ministerio de Economía y Finanzas Públicas de Bolivia, vol. 5(1), pages 73-98, Junio.
  • Handle: RePEc:efp:journl:v:5:y:2022:i:1:p:73-98
    as

    Download full text from publisher

    File URL: https://www.economiayfinanzas.gob.bo/sites/default/files/2024-02/CIEB_V5N1_Paper3.pdf
    Download Restriction: no

    File URL: https://www.economiayfinanzas.gob.bo/sites/default/files/2024-02/CIEB_V5N1_Paper3.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Pobreza; random forest; XGBoost; Bolivia;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:efp:journl:v:5:y:2022:i:1:p:73-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Unidad de Análisis y Estudios Fiscales (email available below). General contact details of provider: https://edirc.repec.org/data/mdhgvbo.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.