IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v3y1996i1-2p21-35.html
   My bibliography  Save this article

Energy trends in the Japanese transportation sector

Author

Listed:
  • Kiang, Nancy
  • Schipper, Lee

Abstract

Passenger transportation in Japan, which is comprised of a high share of rail passengers and a low share of private vehicles, is considered one of the least energy-intensive transportation sectors in the industrialized countries. The thesis of this paper is that, despite low per capita energy use, when the intensities of individual modes are compared, Japanese transportation is not more energy efficient. Here, a detailed 25-year energy balance of this sector is analyzed, disaggregating fuel use within the different modes of transport as well as identifying the role of mini-cars and mini-trucks in Japanse transport activity and energy use. Changes in activity, modal structure, and modal energy intensity are separated out to describe energy-consumption trends. (Modal structure is found to be the primary factor behind the current low energy intensity of passenger transport and the high energy intensity of freight.) It is shown, through comparisons with similar data for the USA and eight European countries, that the low per capita energy use for passenger travel in Japan is related to both the low level of travel in general and the great importance of rail and bus, while there is very little difference between the structure of Japanese and European energy use for freight. The increased use of larger private cars and freight trucks continues to raise the energy intensity of the transportation sector, while air transport continues to gain shares in both sectors. Indeed, aggregate travel in Japan is more energy intensive than it is in Europe, and aggregate freight more energy intensive than in either the USA or Europe. Past improvements in energy efficiency were for the most part motivated by commercial concerns. No specific government policies to conserve transportation energy exist, and there is little evidence that policies had any effects on energy use, except, perhaps to increase energy use. The concluding discussion addresses the effects of Japanese transportation energy trends on carbon dioxide emissions.

Suggested Citation

  • Kiang, Nancy & Schipper, Lee, 1996. "Energy trends in the Japanese transportation sector," Transport Policy, Elsevier, vol. 3(1-2), pages 21-35.
  • Handle: RePEc:eee:trapol:v:3:y:1996:i:1-2:p:21-35
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0967-070X(96)00001-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schipper, Lee & Figueroa, Maria Josefina & Price, Lynn & Espey, Molly, 1993. "Mind the gap The vicious circle of measuring automobile fuel use," Energy Policy, Elsevier, vol. 21(12), pages 1173-1190, December.
    2. Richard B. Howarth & Lee Schipper & Bo Andersson, 1993. "The Structure and Intensity of Energy Use: Trends in Five OECD Nations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 27-46.
    3. Schipper, Lee & Tax, Wienke, 1994. "New car test and actual fuel economy: yet another gap?," Transport Policy, Elsevier, vol. 1(4), pages 257-265, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    2. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    3. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    4. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    5. Rafaa Mraïhi & Riadh Harizi, 2014. "Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia," Energy & Environment, , vol. 25(1), pages 79-92, February.
    6. Eom, Jiyong & Schipper, Lee, 2010. "Trends in passenger transport energy use in South Korea," Energy Policy, Elsevier, vol. 38(7), pages 3598-3607, July.
    7. Katerina PAPAGIANNAKI & Danae DIAKOULAKI, 2008. "Decomposition Analysis of CO2 Emissions from Passenger Cars: The cases of Greece and Denmark," EcoMod2008 23800102, EcoMod.
    8. Greening, Lorna A., 2004. "Effects of human behavior on aggregate carbon intensity of personal transportation: comparison of 10 OECD countries for the period 1970-1993," Energy Economics, Elsevier, vol. 26(1), pages 1-30, January.
    9. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
    10. Julien Brunel, 2005. "Le transport de marchandises et la croissance économique," Post-Print halshs-00095907, HAL.
    11. Lipscy, Phillip Y. & Schipper, Lee, 2013. "Energy efficiency in the Japanese transport sector," Energy Policy, Elsevier, vol. 56(C), pages 248-258.
    12. Mraihi, Rafaa & ben Abdallah, Khaled & Abid, Mehdi, 2013. "Road transport-related energy consumption: Analysis of driving factors in Tunisia," Energy Policy, Elsevier, vol. 62(C), pages 247-253.
    13. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    14. Lund, Henrik & Münster, Ebbe, 2006. "Integrated transportation and energy sector CO2 emission control strategies," Transport Policy, Elsevier, vol. 13(5), pages 426-433, September.
    15. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachariadis, Theodoros & Samaras, Zissis, 2001. "Validation of road transport statistics through energy efficiency calculations," Energy, Elsevier, vol. 26(5), pages 467-491.
    2. Kwon, Tae-Hyeong, 2006. "The determinants of the changes in car fuel efficiency in Great Britain (1978-2000)," Energy Policy, Elsevier, vol. 34(15), pages 2405-2412, October.
    3. Schipper, Lee, 2011. "Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?," Transport Policy, Elsevier, vol. 18(2), pages 358-372, March.
    4. Meyer, I. & Wessely, S., 2009. "Fuel efficiency of the Austrian passenger vehicle fleet--Analysis of trends in the technological profile and related impacts on CO2 emissions," Energy Policy, Elsevier, vol. 37(10), pages 3779-3789, October.
    5. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    6. Eric Fosu Oteng-Abayie & Prosper Awuni Ayinbilla & Maame Esi Eshun, 2018. "Macroeconomic Determinants of Crude Oil Demand in Ghana," Global Business Review, International Management Institute, vol. 19(4), pages 873-888, August.
    7. L. Schipper & R. Haas & C. Sheinbaum, 1996. "Recent Trends in Residential Energy Use in OECD Countries and their Impact on Carbon Dioxide Emissions: A Comparative Analysis of the Period 1973–1992," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(2), pages 167-196, December.
    8. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    9. Li, Meng & Jin, Tianyu & Liu, Shenglong & Zhou, Shaojie, 2021. "The cost of clean energy transition in rural China: Evidence based on marginal treatment effects," Energy Economics, Elsevier, vol. 97(C).
    10. Haas, Reinhard, 1997. "Energy efficiency indicators in the residential sector : What do we know and what has to be ensured?," Energy Policy, Elsevier, vol. 25(7-9), pages 789-802.
    11. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    12. Sheinbaum-Pardo, Claudia & Chávez-Baeza, Carlos, 2011. "Fuel economy of new passenger cars in Mexico: Trends from 1988 to 2008 and prospects," Energy Policy, Elsevier, vol. 39(12), pages 8153-8162.
    13. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
    14. Wu, Tian & Han, Xiao & Zheng, M. Mocarlo & Ou, Xunmin & Sun, Hongbo & Zhang, Xiong, 2020. "Impact factors of the real-world fuel consumption rate of light duty vehicles in China," Energy, Elsevier, vol. 190(C).
    15. Eom, Jiyong & Schipper, Lee, 2010. "Trends in passenger transport energy use in South Korea," Energy Policy, Elsevier, vol. 38(7), pages 3598-3607, July.
    16. Ina Meyer & Stefan Wessely, 2010. "Determinanten und Energieeffizienz der österreichischen Pkw-Flotte," WIFO Monatsberichte (monthly reports), WIFO, vol. 83(4), pages 389-399, April.
    17. Greening, Lorna A., 2004. "Effects of human behavior on aggregate carbon intensity of personal transportation: comparison of 10 OECD countries for the period 1970-1993," Energy Economics, Elsevier, vol. 26(1), pages 1-30, January.
    18. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    19. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    20. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:3:y:1996:i:1-2:p:21-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.