IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v196y2025ics1366554525000493.html
   My bibliography  Save this article

Integrated reinforcement learning of automated guided vehicles dynamic path planning for smart logistics and operations

Author

Listed:
  • Ho, G.T.S.
  • Tang, Yuk Ming
  • Leung, Eric K.H.
  • Tong, P.H.

Abstract

Automated guided vehicles (AGV) play a critical role in fostering a smarter logistics and operations environment. Conventional path planning for AGVs enables the load-in-load-out of the items, but existing approaches rarely consider dynamic integrations with smart warehouses and factory systems. Therefore, this study presents a reinforcement learning (RL) approach for real-time path planning in automated guided vehicles within smart warehouses or smart factories. Unlike conventional path planning methods, which struggle to adapt to dynamic operational changes, the proposed algorithm integrates real-time information to enable responsive and flexible routing decisions. The novelty of this study lies in integrating AGV path planning and RL within a dynamic environment, such as a smart warehouse containing various workstations, charging stations, and storage locations. Through various scenarios in smart factory settings, this research demonstrates the algorithm’s effectiveness in handling complex logistics and operations environments. This research advances AGV technology by providing a scalable solution for dynamic path planning, enhancing efficiency in modern industrial systems.

Suggested Citation

  • Ho, G.T.S. & Tang, Yuk Ming & Leung, Eric K.H. & Tong, P.H., 2025. "Integrated reinforcement learning of automated guided vehicles dynamic path planning for smart logistics and operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:transe:v:196:y:2025:i:c:s1366554525000493
    DOI: 10.1016/j.tre.2025.104008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:196:y:2025:i:c:s1366554525000493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.