IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v195y2025ics1366554525000377.html
   My bibliography  Save this article

Real-time vehicle relocation and charging optimization for one-way electric carsharing systems

Author

Listed:
  • Xu, Min
  • Wu, Ting

Abstract

This study investigates a real-time vehicle relocation and charging strategy (RT-VR&CS) problem for the one-way electric carsharing services considering demand dynamics and practical nonlinear charging profile. The RT-VR&CS problem aims to develop a fast and robust algorithm to determine the real-time relocation and charging strategies for electric vehicles (EVs) with the goal of maximizing the profit of carsharing operators. A dynamic algorithmic framework based on a rolling time horizon is first established. Specifically, the entire planning horizon is divided into a series of sub-horizons, and a static vehicle relocation and charging strategy (S-VR&CS) problem is subsequently addressed over each sub-horizon in regard to the latest rental information known up to the beginning of the sub-horizon. For each static problem, we employ a set-packing-type formulation and a column-generation-based solution method. In particular, a multi-label method is developed to generate activity trajectories (i.e., columns) incorporating vehicle relocation and charging strategy for the first static problem, whereas the activity trajectories for the subsequent static problems are efficiently generated in an online environment by leveraging the existing activity trajectories generated for the previous static problem and employing a reactive column generation process. Numerical experiments on randomly generated instances and a case study based on a one-way carsharing company in China, i.e., EVCARD, are conducted to demonstrate the efficiency of the proposed solution method. The impacts of algorithm-related parameters, the demand dynamism, the service charge, and the relocation cost on the performance of one-way electric carsharing systems are also analyzed.

Suggested Citation

  • Xu, Min & Wu, Ting, 2025. "Real-time vehicle relocation and charging optimization for one-way electric carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000377
    DOI: 10.1016/j.tre.2025.103996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.103996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.