IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v195y2025ics1366554525000080.html
   My bibliography  Save this article

A learning-based robust optimization framework for synchromodal freight transportation under uncertainty

Author

Listed:
  • Filom, Siyavash
  • Razavi, Saiedeh

Abstract

Synchromodal freight transport is characterized by its inherent dynamicity, necessitating the need for optimal decision-making in the presence of uncertainties in the real world. However, most prior research has overlooked the complexities of uncertainty modeling, often relying on assumed probability distributions that may not accurately reflect real-world conditions. This study presents a learning-based robust optimization framework for synchromodal freight transportation to derive data-driven explainable decisions. The study proposes a predict-then-optimize framework, using a combination of the Bayesian Neural Network with uncertainty quantification and dynamic robust optimization modules to solve the shipment matching problem under the synchromodality concept. The integration of prediction and optimization modules is achieved through scenario-based adjustable uncertainty sets. Rather than generating a single optimal solution, this framework produces an optimal policy based on various scenarios, enabling decision-makers to evaluate trade-offs and make informed decisions. The framework is implemented for the Great Lakes region containing nine intermodal terminals using real-world data and the performance is evaluated under various scenarios. In addition, a preprocessing heuristic-based feasible path generation algorithm is developed that helps the framework to maintain linear solution time. Numerical experiments performed on large demand instances (up to 700 shipment requests) demonstrate that the upstream prediction module significantly impacts the downstream optimization module. This effect is primarily due to variations in road travel times across scenarios, which impact transshipment operations, storage, and delay costs.

Suggested Citation

  • Filom, Siyavash & Razavi, Saiedeh, 2025. "A learning-based robust optimization framework for synchromodal freight transportation under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000080
    DOI: 10.1016/j.tre.2025.103967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.103967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.