IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v195y2025ics1366554525000067.html
   My bibliography  Save this article

Shared use of dedicated lanes by connected and automated buses and private vehicles: A multi-green-wave signal control scheme

Author

Listed:
  • Chen, Xiangdong
  • Guan, Hao
  • Meng, Qiang

Abstract

In the initial phase of implementing connected and automated vehicle (CAV) technology, the coexistence of human-driven vehicles (HVs) and CAVs is anticipated for the foreseeable future. While dedicated CAV lane is recognized as an effective solution to enhance traffic safety and efficiency in mixed traffic scenarios, it faces the challenges of road resource wastage, especially at low CAV penetration rates. Therefore, this study proposes a novel concept of a shared CAV lane for both connected and automated buses (CABs) and private CAVs, and develops a multi-green-wave control method for arterials to achieve space–time coordination in heterogeneous traffic. The two-dimensional traffic coordination aims to concurrently improve the service level of CABs and enhance overall traffic efficiency. A three-scale framework is established to integrate the control problems at the lane, intersection, and arterial levels. With the deployment of CAV lanes, lane-specified flow distribution control problem is investigated at the lane level, and a dedicated phase is designed to provide exclusive right-of-ways for CAVs, and jointed with an online conflict-free control strategy at the intersection level. Building upon this, a multiple green-wave design is developed for heterogeneous traffic at arterials, to take full exploit of the space–time resources of both CAV lanes and regular lanes and further improve traffic efficiency. To address the challenges of large-scale and complicated-structure optimization and enable real-time implementation, a hierarchical solution method is proposed. The original problem is decomposed into sub-problems, which can be efficiently solved with an approximation approach to relax the bounding constraints among them. Simulation experiments conducted on an arterial in Singapore validate the performance of the proposed methods. The results demonstrate that the proposed two-dimensional coordination strategy significantly improves traffic efficiency compared to other classic counterpart strategies, reducing the average travel delay for CABs, private CAVs, and HVs by at least 20.4%, 37.4%, and 21.4%, respectively.

Suggested Citation

  • Chen, Xiangdong & Guan, Hao & Meng, Qiang, 2025. "Shared use of dedicated lanes by connected and automated buses and private vehicles: A multi-green-wave signal control scheme," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000067
    DOI: 10.1016/j.tre.2025.103965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.103965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.