IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v195y2025ics1366554525000043.html
   My bibliography  Save this article

Predictive and prescriptive analytics for robust airport gate assignment planning in airside operations under uncertainty

Author

Listed:
  • Zhang, Chenliang
  • Jin, Zhongyi
  • Ng, Kam K.H.
  • Tang, Tie-Qiao
  • Zhang, Fangni
  • Liu, Wei

Abstract

With the increasing demand for air transport, numerous airports have exceeded their available capacity, resulting in more frequent congestion and disruptions. Therefore, airport gate assignment plans must prioritise robustness to alleviate congestion, absorb disruptions, and maintain high service levels. Given the uncertainties in airside operations, providing robust decisions is challenging. To address this issue, we employ two prescriptive analytics approaches to develop airport gate assignment plans. These approaches leverage historical data, auxiliary data, and machine learning (ML) methods to enhance decision effectiveness and robustness. Initially, we adopt a predict-then-optimise approach, utilising ML methods to predict aircraft arrival times. These predictions are then used as input for a deterministic model of the airport gate assignment problem (AGAP). Subsequently, we explore an estimate-then-optimise approach. In this approach, we first estimate the distribution of uncertain aircraft arrival times using ML methods. Then, we solve the two-stage stochastic programming model for the AGAP based on the estimated distribution. Given the complexity of the estimate-then-optimise approach, we develop an effective scenario selection strategy, the cluster-based scenario reduction (CSR) method, to maintain tractability while ensuring decision performance. Concurrently, we develop an efficient exact solution method, the Benders-based branch-and-cut (BBC) method, to effectively handle larger and more complex test instances. Numerical experiments using real-world data from Xiamen Gaoqi International Airport demonstrate the effectiveness of the CSR and BBC methods. The CSR method performs better with a smaller sample size, while the BBC method significantly enhances computational performance compared to commercial solvers. These proposed methods improve the tractability and scalability of the estimate-then-optimise approach. Notably, the estimate-then-optimise approach outperforms the predict-then-optimise approach driven by the same ML method. Furthermore, we find that estimate-then-optimise approaches, supported by well-performing ML methods and scenario selection strategies, provide superior performance compared to other optimisation approaches.

Suggested Citation

  • Zhang, Chenliang & Jin, Zhongyi & Ng, Kam K.H. & Tang, Tie-Qiao & Zhang, Fangni & Liu, Wei, 2025. "Predictive and prescriptive analytics for robust airport gate assignment planning in airside operations under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000043
    DOI: 10.1016/j.tre.2025.103963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.103963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.