IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524005295.html
   My bibliography  Save this article

Two-dimensional lane configuration design approach for Autonomous Vehicle Dedicated Lanes in urban networks

Author

Listed:
  • Chen, Xiangdong
  • Zhang, Fang
  • Guan, Hao
  • Meng, Qiang

Abstract

This study focuses on optimizing Autonomous Vehicle Dedicated Lanes (AVDLs) in urban networks, a critical step in managing mixed traffic where autonomous vehicles (AVs) and human-driven vehicles (HVs) coexist. Traditional AVDL deployment strategies have mainly optimized the number of AVDLs without adequately considering the directional functionality of lanes or their various lane-specific travel costs at intersections. To address these gaps, we propose a two-dimensional lane configuration approach that optimizes both the number of AVDLs on each road segment and their directional functionality for various traffic movements. Intersection delays are incorporated into the travel cost computation, through identifying the specific right-of-way allocations associated with different lane types. The proposed approach enables a more precise calculation of traffic volumes and travel costs on each lane-specific path, by categorizing travel into AVDL-only paths, hybrid-lane paths, and regular lane (RL)-only paths. A lane-specific user equilibrium (UE) model is developed to capture traffic dynamics on various lane types, with the existence and uniqueness of the UE solution rigorously proven. The AVDL configuration optimization is efficiently solved using a bi-level solution method. This method integrates a customized Monte Carlo Tree Search (MCTS) algorithm with a traffic accommodation ranking approach and a Frank–Wolfe-type algorithm with a link pruning technique to enhance computational efficiency. Numerical experiments on a toy network and the well-known Sioux-Falls network demonstrate the effectiveness of the proposed two-dimensional AVDL configuration approach and the efficiency of the bi-level solution method. This study contributes to the field by extending AVDL configuration to two dimensions, providing a comprehensive framework for future urban network design in mixed traffic environments.

Suggested Citation

  • Chen, Xiangdong & Zhang, Fang & Guan, Hao & Meng, Qiang, 2025. "Two-dimensional lane configuration design approach for Autonomous Vehicle Dedicated Lanes in urban networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005295
    DOI: 10.1016/j.tre.2024.103938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524005295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.