Author
Listed:
- Tang, Tao
- Chai, Simin
- Wu, Wei
- Yin, Jiateng
- D’Ariano, Andrea
Abstract
In high-speed railway systems, unexpected disruptions can result in delays of trains, significantly affecting the quality of service for passengers. Train Timetable Rescheduling (TTR) is a crucial task in the daily operation of high-speed railways to maintain punctuality and efficiency in the face of such unforeseen disruptions. Most existing studies on TTR are based on integer programming (IP) techniques and are required to solve IP models repetitively in case of disruptions, which however may be very time-consuming and greatly limit their usefulness in practice. Our study first proposes a multi-task deep reinforcement learning (MDRL) approach for TTR. Our MDRL is constructed and trained offline with a large number of historical disruptive events, enabling to generate TTR decisions in real-time for different disruption cases. Specifically, we transform the TTR problem into a Markov decision process considering the retiming and rerouting of trains. Then, we construct the MDRL framework with the definition of state, action, transition, reward, and value function approximations with neural networks for each agent (i.e., rail train), by considering the information of different disruption events as tasks. To overcome the low training efficiency and huge memory usage in the training of MDRL, given a large number of disruptive events in the historical data, we develop a new and high-efficient training method based on a Quadratic assignment programming (QAP) model and a Frank-Wolfe-based algorithm. Our QAP model optimizes only a small number but most “representative” tasks from the historical data, while the Frank-Wolfe-based algorithm approximates the nonlinear terms in the value function of MDRL and updates the model parameters among different training tasks concurrently. Finally, based on the real-world data from the Beijing–Zhangjiakou high-speed railway systems, we evaluate the performance of our MDRL approach by benchmarking it against state-of-the-art approaches in the literature. Our computational results demonstrate that an offline-trained MDRL is able to generate near-optimal TTR solutions in real-time against different disruption scenarios, and it evidently outperforms state-of-art models regarding solution quality and computational time.
Suggested Citation
Tang, Tao & Chai, Simin & Wu, Wei & Yin, Jiateng & D’Ariano, Andrea, 2025.
"A multi-task deep reinforcement learning approach to real-time railway train rescheduling,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
Handle:
RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004915
DOI: 10.1016/j.tre.2024.103900
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004915. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.