Author
Listed:
- Hao, Yilang
- Chen, Zhibin
- Sun, Xiaotong
- Tong, Lu
Abstract
Truck platooning, a linking technology of trucks on the highway, has gained enormous attention in recent years due to its benefits in energy and operation cost savings. However, most existing studies on truck platooning limit their focus on particular scenarios that each truck can serve only one customer demand and is thus with a specified origin–destination pair, so only routing and time schedules are taken into account. Nevertheless, in real-world logistics, each truck may need to serve multiple customers located at different places, and the operator managing a fleet of trucks thus has to determine not only the routing and time schedules of each truck but also the set of customers allocated to each truck and their sequence to visit. This is well known as a capacitated vehicle routing problem with time windows (CVRPTW), and considering the application of truck platooning in such a problem entails new modeling frameworks and tailored solution algorithms. In light of this, this study makes the first attempt to optimize the truck platooning plan for a road-network CVRPTW in a way to minimize the total operation cost, including vehicles’ fixed dispatch cost and energy cost, while fulfilling all delivery demands within their time window constraints. Specifically, the operation plan will dictate the number of trucks to be dispatched, the set of customers, and the routing and time schedules for each truck. In addition, the modeling framework is constructed based on a road network instead of a traditional customer node graph to better resemble and facilitate the platooning operation. A 3-stage algorithm embedded with a ”route-then-schedule” scheme, Dynamic Programming, and Modified Insertion heuristic, is developed to solve the proposed model in a timely manner. Numerical experiments are conducted to validate the proposed modeling framework, demonstrate the performance of the proposed solution algorithm, and quantify the benefit brought by the truck platooning technology.
Suggested Citation
Hao, Yilang & Chen, Zhibin & Sun, Xiaotong & Tong, Lu, 2025.
"Planning of truck platooning for road-network capacitated vehicle routing problem,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
Handle:
RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004897
DOI: 10.1016/j.tre.2024.103898
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004897. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.