Author
Listed:
- Zhang, Qi
- Ma, Zhenliang
- Wu, Yuanyuan
- Liu, Yang
- Qu, Xiaobo
Abstract
Bus services often face operational delays due to dynamic conditions such as traffic congestion, which can propagate through bus routes, affecting overall system performance. Understanding the causes of bus arrival delays is crucial for effective public transport management and control. Moreover, understanding the contribution of each factor to bus delays not only aids in developing targeted strategies to mitigate delays but is also crucial for effective decision-making and planning. Traditional research primarily focuses on correlation-based analysis, lacking the ability to reveal the underlying causal mechanisms. Additionally, no studies have considered the complex causal relationships between factors when quantifying their contributions to outcomes in public transport. This study aims to analyze the factors causing bus arrival delays from a causal perspective, focusing on quantifying the causal contribution of each factor while considering their causal relationships. Quantifying a factor’s causal contribution poses challenges due to computational complexity and statistical bias from the limited sample size. Using a causal discovery method, this study generates a causal graph for bus arrival delays and employs the causality-based Shapley value to quantify the contribution of each variable. The study further uses the Double Machine Learning (DML) approach to estimate the causal contributions, which provides a consistent and computationally feasible method. A case study was conducted using Google Transit Feed Specification (GTFS) data, focusing on high-frequency bus routes in Stockholm, Sweden. To validate the model, cross-validation was performed by comparing variable importance rankings with traditional models, including Linear Regression (LR) and Structural Equation Modeling (SEM). The comparison shows that results from the causality-based Shapley value significantly differ from those obtained by traditional methods in terms of importance rankings and influence magnitudes. The findings underscore the significant impact of origin delays on bus punctuality, a factor often underestimated in previous studies. Additionally, it demonstrates that employing a causal discovery model can not only infer causal relationships but also reveal direct and indirect effects, which can provide more intuitive explanations. Finally, although the causal results are mathematically and intuitively sound, it is important to further investigate the real causality impact in practice using lab experiments or A/B tests in real-world settings.
Suggested Citation
Zhang, Qi & Ma, Zhenliang & Wu, Yuanyuan & Liu, Yang & Qu, Xiaobo, 2025.
"Quantifying variable contributions to bus operation delays considering causal relationships,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
Handle:
RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004721
DOI: 10.1016/j.tre.2024.103881
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004721. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.