IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524004654.html
   My bibliography  Save this article

An adaptive genetic hyper-heuristic algorithm for a two-echelon vehicle routing problem with dual-customer satisfaction in community group-buying

Author

Listed:
  • Xu, Song
  • Ou, Xiangyue
  • Govindan, Kannan
  • Chen, Mingzhou
  • Yang, Wenting

Abstract

This study focuses on a novel variant of the classical two-echelon vehicle routing problem (2E-VRP), termed the two-echelon vehicle routing problem with dual-customer satisfaction (2E-VRP-DS) (i.e. time windows satisfaction and freshness satisfaction) in community group-buying. It is important to obtain better solutions for the 2E-VRP-DS with long-distance distribution in the first echelon and last-mile delivery in the second echelon. Therefore, a new mathematical model is established for the 2E-VRP-DS that incorporates objectives: minimising the total distribution costs, and maximum dual-customer satisfaction (time windows satisfaction, and product freshness satisfaction). To solve the mathematical model, an efficient adaptive genetic hyper-heuristic algorithm (AGA-HH) was proposed, complemented by a k-means clustering approach to generate initial solutions. The adaptive genetic algorithm is considered to be a high-level heuristic, and ten local search operators were considered as low-level heuristics to expand the search region of the solution and achieve robust optimal results. Three sets of experiments were conducted, and the results demonstrated the superiority of AGA-HH in solving the 2E-VRP-DS, showing improvements in distribution costs reduction, time windows compliance, and product freshness preservation. Moreover, sensitivity analyses were carried out to show the influence of the number of DCs and the tolerance range of product freshness, discovering some managerial insights for companies. Future work should consider and investigate VRPs in other new business modes.

Suggested Citation

  • Xu, Song & Ou, Xiangyue & Govindan, Kannan & Chen, Mingzhou & Yang, Wenting, 2025. "An adaptive genetic hyper-heuristic algorithm for a two-echelon vehicle routing problem with dual-customer satisfaction in community group-buying," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004654
    DOI: 10.1016/j.tre.2024.103874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.