IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524004630.html
   My bibliography  Save this article

Strategic planning of geo-fenced micro-mobility facilities using reinforcement learning

Author

Listed:
  • Teusch, Julian
  • Saavedra, Bruno Neumann
  • Scherr, Yannick Oskar
  • Müller, Jörg P.

Abstract

The rise of Lightweight Shared Electric Vehicles (LSEVs) like e-scooters and e-bikes marks a shift towards sustainable urban mobility but brings challenges such as cluttering public spaces and distribution issues. Geo-fenced systems have emerged to mitigate these problems by restricting LSEVs to designated areas. However, integrating these infrastructures effectively remains challenging due to regulatory, convenience, and operational hurdles. In this study, we introduce a facility location optimization problem that strategically places Micro-Mobility Service Facilities (MMSFs) that enable charging, parking, and battery swapping of LSEVs. A utility model with benefit and loss functions accounts for the multiple objectives in this problem, including the impact of MMSF placement on service coverage and user convenience as well as financial and logistical costs. This model is uniquely customizable, allowing urban planners to modify the utility function’s parameters to align with specific local priorities and regulatory conditions. To solve this facility location optimization problem, we present a Deep Reinforcement Learning (RL) method that iteratively learns optimal placement strategies for Micro-Mobility Service Facilities by simulating interactions within real-world urban road networks and adapting to user demand patterns, regulatory constraints, and operational efficiencies. Our experiments in Austin and Louisville demonstrate that strategic placement of these facilities leads to substantial enhancements in infrastructure coverage, with improvements in parking demand by up to 163% in Austin and 72% in Louisville. These results underline the role of our approach in fostering more equitable and efficient urban mobility systems, significantly exceeding traditional simulation-based methods in both coverage and operational logistics. In particular, the results based on various budget scenarios reveal that service coverage and accessibility can be improved, with diminishing returns at higher budget levels due to demand saturation.

Suggested Citation

  • Teusch, Julian & Saavedra, Bruno Neumann & Scherr, Yannick Oskar & Müller, Jörg P., 2025. "Strategic planning of geo-fenced micro-mobility facilities using reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004630
    DOI: 10.1016/j.tre.2024.103872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.