IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v80y2015icp132-149.html
   My bibliography  Save this article

Implicit choice set generation in discrete choice models: Application to household auto ownership decisions

Author

Listed:
  • Paleti, Rajesh

Abstract

Latent choice set models that account for probabilistic consideration of choice alternatives during decision making have long existed. The Manski model that assumes a two-stage representation of decision making has served as the standard workhorse model for discrete choice modeling with latent choice sets. However, estimation of the Manski model is not always feasible because evaluation of the likelihood function in the Manski model requires enumeration of all possible choice sets leading to explosion for moderate and large choice sets. In this study, we propose a new group of implicit choice set generation models that can approximate the Manski model while retaining linear complexity with respect to the choice set size. We examined the performance of the models proposed in this study using synthetic data. The simulation results indicate that the approximations proposed in this study perform considerably well in terms of replicating the Manski model parameters. We subsequently used these implicit choice set models to understand latent choice set considerations in household auto ownership decisions of resident population in the Southern California region. The empirical results confirm our hypothesis that certain segments of households may only consider a subset of auto ownership levels while making decisions regarding the number of cars to own. The results not only underscore the importance of using latent choice models for modeling household auto ownership decisions but also demonstrate the applicability of the approximations proposed in this study to estimate these latent choice set models.

Suggested Citation

  • Paleti, Rajesh, 2015. "Implicit choice set generation in discrete choice models: Application to household auto ownership decisions," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 132-149.
  • Handle: RePEc:eee:transb:v:80:y:2015:i:c:p:132-149
    DOI: 10.1016/j.trb.2015.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515001447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    2. Sabreena Anowar & Shamsunnahar Yasmin & Naveen Eluru & Luis Miranda-Moreno, 2014. "Analyzing car ownership in Quebec City: a comparison of traditional and latent class ordered and unordered models," Transportation, Springer, vol. 41(5), pages 1013-1039, September.
    3. Marisol Castro & Francisco Martínez & Marcela Munizaga, 2013. "Estimation of a constrained multinomial logit model," Transportation, Springer, vol. 40(3), pages 563-581, May.
    4. Bhat, Chandra R. & Pulugurta, Vamsi, 1998. "A comparison of two alternative behavioral choice mechanisms for household auto ownership decisions," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 61-75, January.
    5. Martínez, Francisco & Aguila, Felipe & Hurtubia, Ricardo, 2009. "The constrained multinomial logit: A semi-compensatory choice model," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 365-377, March.
    6. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    2. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    3. Pilli, Luis & Swait, Joffre & Mazzon, José Afonso, 2022. "Jeopardizing brand profitability by misattributing process heterogeneity to preference heterogeneity," Journal of choice modelling, Elsevier, vol. 43(C).
    4. Habib, Khandker Nurul, 2019. "Mode choice modelling for hailable rides: An investigation of the competition of Uber with other modes by using an integrated non-compensatory choice model with probabilistic choice set formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 205-216.
    5. Rajesh Paleti & Lacramioara Balan, 2019. "Misclassification in travel surveys and implications to choice modeling: application to household auto ownership decisions," Transportation, Springer, vol. 46(4), pages 1467-1485, August.
    6. José Luis Espinosa-Aranda & Ricardo García-Ródenas & María Luz López-García & Eusebio Angulo, 2018. "Constrained nested logit model: formulation and estimation," Transportation, Springer, vol. 45(5), pages 1523-1557, September.
    7. Kulindwa, Yusuph J. & Ahlgren, Erik O., 2021. "Households and tree-planting for wood energy production – Do perceptions matter?," Forest Policy and Economics, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    2. Ali, Azam & Kalatian, Arash & Choudhury, Charisma F., 2023. "Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Page, Kenneth & Pérez, Juan & Telha, Claudio & García-Echalar, Andrés & López-Ospina, Héctor, 2021. "Optimal bundle composition in competition for continuous attributes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1168-1187.
    4. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2016. "Analysis of vehicle ownership evolution in Montreal, Canada using pseudo panel analysis," Transportation, Springer, vol. 43(3), pages 531-548, May.
    5. Seya, Hajime & Nakamichi, Kumiko & Yamagata, Yoshiki, 2016. "The residential parking rent price elasticity of car ownership in Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 123-134.
    6. Kaplan, Sigal & Shiftan, Yoram & Bekhor, Shlomo, 2012. "Development and estimation of a semi-compensatory model with a flexible error structure," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 291-304.
    7. Franco Chingcuanco & Eric Miller, 2014. "A meta-model of vehicle ownership choice parameters," Transportation, Springer, vol. 41(5), pages 923-945, September.
    8. Laviolette, Jérôme & Morency, Catherine & Waygood, E.O.D., 2022. "A kilometer or a mile? Does buffer size matter when it comes to car ownership?," Journal of Transport Geography, Elsevier, vol. 104(C).
    9. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    10. Shenhao Wang & Qingyi Wang & Nate Bailey & Jinhua Zhao, 2018. "Deep Neural Networks for Choice Analysis: A Statistical Learning Theory Perspective," Papers 1810.10465, arXiv.org, revised Sep 2019.
    11. Michael Adjemian & Jeffrey Williams, 2009. "Using census aggregates to proxy for household characteristics: an application to vehicle ownership," Transportation, Springer, vol. 36(2), pages 223-241, March.
    12. José Luis Espinosa-Aranda & Ricardo García-Ródenas & María Luz López-García & Eusebio Angulo, 2018. "Constrained nested logit model: formulation and estimation," Transportation, Springer, vol. 45(5), pages 1523-1557, September.
    13. Oehlmann, Malte & Glenk, Klaus & Lloyd-Smith, Patrick & Meyerhoff, Jürgen, 2021. "Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments," Resource and Energy Economics, Elsevier, vol. 65(C).
    14. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    15. Juan Pérez & Héctor López-Ospina, 2022. "Competitive Pricing for Multiple Market Segments Considering Consumers’ Willingness to Pay," Mathematics, MDPI, vol. 10(19), pages 1-32, October.
    16. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
    17. Guerra, Erick, 2015. "The geography of car ownership in Mexico City: a joint model of households’ residential location and car ownership decisions," Journal of Transport Geography, Elsevier, vol. 43(C), pages 171-180.
    18. Liu, Yangwen & Tremblay, Jean-Michel & Cirillo, Cinzia, 2014. "An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 315-328.
    19. Armando Meza & Paolo Latorre & Milena Bonacic & Héctor López-Ospina & Juan Pérez, 2024. "Optimizing Inventory and Pricing for Substitute Products with Soft Supply Constraints," Mathematics, MDPI, vol. 12(11), pages 1-23, June.
    20. Sabouri, Sadegh & Tian, Guang & Ewing, Reid & Park, Keunhyun & Greene, William, 2021. "The built environment and vehicle ownership modeling: Evidence from 32 diverse regions in the U.S," Journal of Transport Geography, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:80:y:2015:i:c:p:132-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.