IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i5p599-614.html
   My bibliography  Save this article

Synchronization of bus timetabling

Author

Listed:
  • Ibarra-Rojas, Omar J.
  • Rios-Solis, Yasmin A.

Abstract

Timetable generation is a subproblem of bus network strategic planning, in which the departure time of each trip is determined. We study the bus network of Monterrey, Mexico, which is similar to those of other cities in Latin America. It is a large bus network where passenger transfers must be favored, almost evenly spaced departures are sought, and bus bunching of different lines must be avoided. We formulate the timetabling problem of this network with the objective of maximizing the number of synchronizations to facilitate passenger transfers and avoid bus bunching along the network. We define these synchronizations as the arrivals of two trips with a separation time within a time window to make a flexible formulation. This flexibility is a critical aspect for the bus network, since travel times vary because of reasons such as driver speed, traffic congestion, and accidents. By proving that our problem is NP-hard we answer a 10-year-old open question about the NP-hardness of similar problems present in literature. Next, we analyze the structural properties of the feasible solution space of our model. This analysis leads to a preprocessing stage that eliminates numerous decision variables and constraints. Moreover, this preprocessing defines feasible synchronization and arrival time windows that are used in a new metaheuristic algorithm. Empirical experimentation shows that our proposed algorithm obtains high-quality solutions for real-size instances in less than one minute.

Suggested Citation

  • Ibarra-Rojas, Omar J. & Rios-Solis, Yasmin A., 2012. "Synchronization of bus timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 599-614.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:5:p:599-614
    DOI: 10.1016/j.trb.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261512000070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    2. James H. Bookbinder & Alain Désilets, 1992. "Transfer Optimization in a Transit Network," Transportation Science, INFORMS, vol. 26(2), pages 106-118, May.
    3. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    4. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    5. Zhi-Chun Li & William Lam & S. Wong & A. Sumalee, 2010. "An activity-based approach for scheduling multimodal transit services," Transportation, Springer, vol. 37(5), pages 751-774, September.
    6. Helena R. Lourenço & Olivier C. Martin & Thomas Stützle, 2010. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 363-397, Springer.
    7. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    2. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    3. Fonseca, João Paiva & van der Hurk, Evelien & Roberti, Roberto & Larsen, Allan, 2018. "A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 128-149.
    4. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    5. Gkiotsalitis, K. & Cats, O. & Liu, T. & Bult, J.M., 2023. "An exact optimization method for coordinating the arrival times of urban rail lines at a common corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    6. Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    7. Konstantinos Gkiotsalitis & Nitin Maslekar, 2018. "Towards transfer synchronization of regularity-based bus operations with sequential hill-climbing," Public Transport, Springer, vol. 10(2), pages 335-361, August.
    8. Hanne L. Petersen & Allan Larsen & Oli B. G. Madsen & Bjørn Petersen & Stefan Ropke, 2013. "The Simultaneous Vehicle Scheduling and Passenger Service Problem," Transportation Science, INFORMS, vol. 47(4), pages 603-616, November.
    9. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    10. Hadas, Yuval & Ranjitkar, Prakash, 2012. "Modeling public-transit connectivity with spatial quality-of-transfer measurements," Journal of Transport Geography, Elsevier, vol. 22(C), pages 137-147.
    11. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    12. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    13. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    14. Chu, James C. & Korsesthakarn, Kanticha & Hsu, Yu-Ting & Wu, Hua-Yen, 2019. "Models and a solution algorithm for planning transfer synchronization of bus timetables," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 247-266.
    15. Zhang, Di & Gao, Yuan & Yang, Lixing & Cui, Lixin, 2024. "Timetable synchronization of the last several trains at night in an urban rail transit network," European Journal of Operational Research, Elsevier, vol. 313(2), pages 494-512.
    16. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    17. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    18. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
    19. Omar J. Ibarra-Rojas & Fernando López-Irarragorri & Yasmin A. Rios-Solis, 2016. "Multiperiod Bus Timetabling," Transportation Science, INFORMS, vol. 50(3), pages 805-822, August.
    20. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:5:p:599-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.