IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v41y2007i9p1033-1049.html
   My bibliography  Save this article

The relative impact of consignee behaviour and road traffic congestion on distribution costs

Author

Listed:
  • Sankaran, Jayaram K.
  • Wood, Lincoln

Abstract

A theme that emerges from the empirical literature into the impact of road traffic congestion on supply chains is the compounding effect of consignee behaviour on distribution costs: even as congestion levels rise, customers of manufacturers/distributors replenish product on a just-in-time (JIT) basis, which further drives up distribution costs. The reluctance of customers to receive shipments outside business hours exacerbates the distribution task. Since the isolation of the impact of congestion on logistics costs is not always easy, organisations may be tempted to unjustifiably impute rising logistics costs to congestion. Through continuous approximation models, the present research aims to clarify the relative impact of relevant dimensions of consignee behaviour, particularly, JIT replenishment and the length of the workday, and traffic congestion on distribution costs. A critical element of such modelling is the estimation of the required number of vehicles, which in turn depends on the average daily number of commercial trip chains per vehicle. We identify two polar cases. In one case, the estimation of this number is trivial and therefore enables further analysis, including the quantification of the relative impact of congestion on distribution costs and the deduction of empirically testable hypotheses. The other case is considerably less tractable; we consider a specific instance of this case that was broadly relevant to one of the companies that participated in the research. A simulation experiment using real-world data from a NZ manufacturer-distributor serves to validate our analysis.

Suggested Citation

  • Sankaran, Jayaram K. & Wood, Lincoln, 2007. "The relative impact of consignee behaviour and road traffic congestion on distribution costs," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 1033-1049, November.
  • Handle: RePEc:eee:transb:v:41:y:2007:i:9:p:1033-1049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(07)00035-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    2. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    2. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    3. Santos, Luís & Coutinho-Rodrigues, João & Current, John R., 2010. "An improved ant colony optimization based algorithm for the capacitated arc routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 246-266, February.
    4. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haughton, Michael A., 1998. "The performance of route modification and demand stabilization strategies in stochastic vehicle routing," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 551-566, November.
    2. Chiang, Wen-Chyuan & Russell, Robert & Xu, Xiaojing & Zepeda, David, 2009. "A simulation/metaheuristic approach to newspaper production and distribution supply chain problems," International Journal of Production Economics, Elsevier, vol. 121(2), pages 752-767, October.
    3. Novaes, Antonio G. N. & Graciolli, Odacir D., 1999. "Designing multi-vehicle delivery tours in a grid-cell format," European Journal of Operational Research, Elsevier, vol. 119(3), pages 613-634, December.
    4. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    5. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    6. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    7. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    8. Almeder, Christian & Hartl, Richard F., 2013. "A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer," International Journal of Production Economics, Elsevier, vol. 145(1), pages 88-95.
    9. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    10. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    11. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    12. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    13. Long He & Ying Rong & Zuo‐Jun Max Shen, 2020. "Product Sourcing and Distribution Strategies under Supply Disruption and Recall Risks," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 9-23, January.
    14. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    15. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    16. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    17. Atieh Madani & Rajan Batta & Mark Karwan, 2021. "The balancing traveling salesman problem: application to warehouse order picking," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 442-469, July.
    18. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    19. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    20. Hall, Randolph W., 1992. "Pickup and Delivery Systems For Overnight Carriers," University of California Transportation Center, Working Papers qt5j97q5xc, University of California Transportation Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:41:y:2007:i:9:p:1033-1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.