IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v34y2000i7p583-603.html
   My bibliography  Save this article

Structural properties of solutions arising from a nonequilibrium traffic flow theory

Author

Listed:
  • Zhang, H. M.

Abstract

This paper analyzes the structural properties of the shock and rarefaction wave solutions of a nonequilibrium theory of vehicular traffic flow. It shows that this nonequilibrium theory has two families of characteristics: one is slower and the other is faster than vehicular speed. Corresponding to the slower characteristic arise 1-shock and 1-rarefaction waves, whose behavior is similar to that of the shock and rarefaction waves in the LWR theory; corresponding to the faster characteristic there are 2-shocks (and 2-rarefaction waves) that behave as bores in rivers. The latter behavior does not accord with the generally held view that traffic is an anisotropic fluid. It is shown, however, those 2-shocks and 2-rarefactions in the studied nonequilibrium theory are transitory and their influence on traffic flow decays exponentially. It is further argued that as long as the 2-shocks and 2-rarefactions do not persist, they can be allowed in a nonequilibrium theory. Apart from the behavioral aspects, the paper also derives the formulae for solving the Riemann problem associated with the nonequilibrium theory. Most of the results carry over directly to other nonequilibrium theories of the same kind, including the PW theory.

Suggested Citation

  • Zhang, H. M., 2000. "Structural properties of solutions arising from a nonequilibrium traffic flow theory," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 583-603, September.
  • Handle: RePEc:eee:transb:v:34:y:2000:i:7:p:583-603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00041-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    2. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    3. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    2. Zhang, H. M., 2003. "Driver memory, traffic viscosity and a viscous vehicular traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 27-41, January.
    3. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    4. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    5. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    6. W.-L. Jin & H. M. Zhang, 2003. "The Inhomogeneous Kinematic Wave Traffic Flow Model as a Resonant Nonlinear System," Transportation Science, INFORMS, vol. 37(3), pages 294-311, August.
    7. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    8. Zhang, H. M., 2003. "On the consistency of a class of traffic flow models," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 101-105, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    2. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    3. Zhang, H. M., 2003. "On the consistency of a class of traffic flow models," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 101-105, January.
    4. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    5. Qiao, Dianliang & Lin, Zhiyang & Guo, Mingmin & Yang, Xiaoxia & Li, Xiaoyang & Zhang, Peng & Zhang, Xiaoning, 2022. "Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    7. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    8. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    9. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    10. Jiang, Rui & Wu, Qing-Song, 2003. "Study on propagation speed of small disturbance from a car-following approach," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 85-99, January.
    11. Zhang, H. M., 2003. "Driver memory, traffic viscosity and a viscous vehicular traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 27-41, January.
    12. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    13. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    14. Coşkun, Safa Bozkurt & Atay, Mehmet Tarık & Şentürk, Erman, 2019. "Interpolated variational iteration method for solving the jamming transition problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 481-493.
    15. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    16. Zhang, H. M., 1999. "Analyses of the stability and wave properties of a new continuum traffic theory," Transportation Research Part B: Methodological, Elsevier, vol. 33(6), pages 399-415, August.
    17. Ranju Mohan & Gitakrishnan Ramadurai, 2015. "Submission to the DTA2012 Special Issue: A Case for Higher-Order Traffic Flow Models in DTA," Networks and Spatial Economics, Springer, vol. 15(3), pages 765-790, September.
    18. Cen, Bing-ling & Xue, Yu & Xia, Yu-xian & Zhang, Kun & Zhou, Ji, 2024. "Analysis of the macroscopic effect of a driver’s desired velocity on traffic flow characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    19. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Phase transition in a new heterogeneous macro continuum model of traffic flow under rain and snow weather environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    20. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:34:y:2000:i:7:p:583-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.