IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v194y2025ics0191261525000219.html
   My bibliography  Save this article

A contextual framework for learning routing experiences in last-mile delivery

Author

Listed:
  • Sun, Huai Jun (Norina)
  • Arslan, Okan

Abstract

This paper presents a contextual framework for solving the experience-driven traveling salesman problem in last-mile delivery. The objective of the framework is to generate routes similar to historic high-quality ones as classified by operational experts by considering the unstructured and complex features of the last-mile delivery operations. The framework involves learning a transition weight matrix and using it in a TSP solver to generate high quality routes. In order to learn this matrix, we use descriptive analytics to extract and select important features of the high-quality routes from the data. We present a rule-based method using such extracted features. We then introduce a factorization of the transition weight matrix by features, which reduces the dimensions of the information to be learned. In the predictive analytics stage, we develop (1) Score Guided Coordinate Search as a derivative-free optimization algorithm, and (2) label-guided methods inspired by supervised learning algorithms for learning the routing preferences from the data. Any hidden preferences that are not obtained in the descriptive analytics are captured at this stage. Our approach allows us to blend the advantages of different facets of data science in a single collaborative framework, which is effective in generating high-quality solutions for a last-mile delivery problem. We test the efficiency of the methods using a case study based on Amazon Last-Mile Routing Challenge organized in 2021. A preliminary version of our rule-based method received the third place and a $25,000 award in the challenge. In this paper, we improve the learning performance of our previous methods through predictive analytics, while ensuring that the methods are effective, interpretable and flexible. Our best performing algorithm improves the performance of our rule-based method on an out-of-sample testing dataset by more than 23.1%.

Suggested Citation

  • Sun, Huai Jun (Norina) & Arslan, Okan, 2025. "A contextual framework for learning routing experiences in last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transb:v:194:y:2025:i:c:s0191261525000219
    DOI: 10.1016/j.trb.2025.103172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:194:y:2025:i:c:s0191261525000219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.