IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v192y2025ics0191261525000074.html
   My bibliography  Save this article

Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem

Author

Listed:
  • Fu, Hao
  • Lam, William H.K.
  • Ma, Wei
  • Shi, Yuxin
  • Jiang, Rui
  • Sun, Huijun
  • Gao, Ziyou

Abstract

The residual queue during a given study period (e.g., peak hour) is an important feature that should be considered when solving a traffic assignment problem under equilibrium for strategic traffic planning. Although studies have focused extensively on static or quasi-dynamic traffic assignment models considering the residual queue, they have failed to capture the situation wherein the equilibrium link flow passing through the link is less than the link physical capacity under congested conditions. To address this critical issue, we introduce a novel static traffic assignment model that explicitly incorporates the residual queue and queue-dependent link capacity. The proposed model ensures that equilibrium link flows remain within the physical capacity bounds, yielding estimations more aligned with data observed by traffic detectors, especially in oversaturated scenarios. A generalized link cost function considering queue-dependent capacity, with an additional queuing delay term is proposed. The queuing delay term represents the added travel cost under congestion, offering a framework wherein conventional static models, both with and without physical capacity constraints, become special cases of our model. Our study rigorously analyzes the mathematical properties of the new model, establishing the theoretical uniqueness of solutions for link flow and residual queue under certain conditions. We also introduce a gradient projection-based alternating minimization algorithm tailored for the proposed model. Numerical examples are conducted to demonstrate the superiority and merit of the proposed model and solution algorithm.

Suggested Citation

  • Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261525000074
    DOI: 10.1016/j.trb.2025.103158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261525000074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.