IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v192y2025ics0191261524002716.html
   My bibliography  Save this article

Conditional forecasting of bus travel time and passenger occupancy with Bayesian Markov regime-switching vector autoregression

Author

Listed:
  • Chen, Xiaoxu
  • Cheng, Zhanhong
  • Schmidt, Alexandra M.
  • Sun, Lijun

Abstract

Accurate forecasting of bus travel time and passenger occupancy with uncertainty is essential for both travelers and transit agencies/operators. However, existing approaches to forecasting bus travel time and passenger occupancy mainly rely on deterministic models, providing only point estimates. In this paper, we develop a Bayesian Markov regime-switching vector autoregressive model to jointly forecast both bus travel time and passenger occupancy with uncertainty. The proposed approach naturally captures the intricate interactions among adjacent buses and adapts to the multimodality and skewness of real-world bus travel time and passenger occupancy observations. We develop an efficient Markov chain Monte Carlo (MCMC) sampling algorithm to approximate the resultant joint posterior distribution of the parameter vector. With this framework, the estimation of downstream bus travel time and passenger occupancy is transformed into a multivariate time series forecasting problem conditional on partially observed outcomes. Experimental validation using real-world data demonstrates the superiority of our proposed model in terms of both predictive means and uncertainty quantification compared to the Bayesian Gaussian mixture model.

Suggested Citation

  • Chen, Xiaoxu & Cheng, Zhanhong & Schmidt, Alexandra M. & Sun, Lijun, 2025. "Conditional forecasting of bus travel time and passenger occupancy with Bayesian Markov regime-switching vector autoregression," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002716
    DOI: 10.1016/j.trb.2024.103147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.