IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v192y2025ics0191261524002601.html
   My bibliography  Save this article

Entropy maximization in multi-class traffic assignment

Author

Listed:
  • Wang, Qianni
  • Feng, Liyang
  • Li, Jiayang
  • Xie, Jun
  • Nie, Yu (Marco)

Abstract

Entropy maximization is a standard approach to consistently selecting a unique class-specific solution for multi-class traffic assignment. Here, we show the conventional maximum entropy formulation fails to strictly observe the multi-class bi-criteria user equilibrium condition, because a class-specific solution matching the total equilibrium link flow may violate the equilibrium condition. We propose to fix the problem by requiring the class-specific solution, in addition to matching the total equilibrium link flow, also match the objective function value at the equilibrium. This leads to a new formulation that is solved using an exact algorithm based on dualizing the hard, equilibrium-related constraints. Our numerical experiments highlight the superior stability of the maximum entropy solution, in that it is affected by a perturbation in inputs much less than an untreated benchmark multi-class assignment solution. In addition to instability, the benchmark solution also exhibits varying degrees of arbitrariness, potentially rendering it unsuitable for assessing distributional effects across different groups, a capability crucial in applications concerning vertical equity and environmental justice. The proposed formulation and algorithm offer a practical remedy for these shortcomings.

Suggested Citation

  • Wang, Qianni & Feng, Liyang & Li, Jiayang & Xie, Jun & Nie, Yu (Marco), 2025. "Entropy maximization in multi-class traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002601
    DOI: 10.1016/j.trb.2024.103136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.