IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v192y2025ics0191261524002534.html
   My bibliography  Save this article

Revisiting McFadden’s correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models

Author

Listed:
  • Dekker, Thijs
  • Bansal, Prateek
  • Huo, Jinghai

Abstract

When estimating multinomial logit (MNL) models where choices are made from a large set of available alternatives computational benefits can be achieved by estimating a quasi-likelihood function based on a sampled subset of alternatives in combination with ‘McFadden’s correction factor’. In this paper, we theoretically prove that McFadden’s correction factor minimises the expected information loss in the parameters of interest and thereby has convenient finite (and large sample) properties. That is, in the context of Bayesian estimation the use of sampling of alternatives in combination with McFadden’s correction factor provides the best approximation of the posterior distribution for the parameters of interest irrespective of sample size. As sample sizes become sufficiently large consistent point estimates for MNL can be obtained as per McFadden’s original proof. McFadden’s correction factor can therefore effectively be applied in the context of Bayesian MNL models. We extend these results to the context of mixed multinomial logit models (MMNL) by using the property of data augmentation in Bayesian estimation. McFadden’s correction factor minimises the expected information loss with respect to the augmented individual-level parameters, and in turn also for the population parameters characterising the shape and location of the mixing density in MMNL. Again, the results apply to finite and large samples and most importantly circumvent the need for additional correction factors previously identified for estimating MMNL models using maximum simulated likelihood. Monte Carlo simulations validate this result for sampling of alternatives in Bayesian MMNL models.

Suggested Citation

  • Dekker, Thijs & Bansal, Prateek & Huo, Jinghai, 2025. "Revisiting McFadden’s correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002534
    DOI: 10.1016/j.trb.2024.103129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:192:y:2025:i:c:s0191261524002534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.