IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v16y1982i6p459-470.html
   My bibliography  Save this article

Homogeneous optimal fleet

Author

Listed:
  • Gertsbakh, I.
  • Gurevich, Yuri

Abstract

The structure of chains in the optimal chain decomposition of a periodic schedule S is investigated. A finite oriented graph termed the Linis Graph (LG) is defined which serves as the key for this investigation. The edges of the LG are trip-types of S and the vertices of the LG represent terminals. It is proved that there is an Euler cycle for a connected LG satisfying natural precedence relations between arrival and departure times. Expansion of this cycle in a real time gives a "master-chain" of trips which, being repeated periodically, gives an infinite periodic chain. Time-shifted periodic replication of this chain allows obtaining a group of twin-type periodic chains forming an optimal fleet over S. It is proved that if the LG has m connected components then there is an optimal fleet consisting of m groups of similar periodic chains. It is shown that if the graph of terminals is connected and the LG is disconnected then it is possible to obtain a twin-type fleet over S by adding to S "dummy" trip-types. A general approach to constructing a twin-type fleet of minimal size for this case is described. The relation of the theory developed to the so-called center problem is discussed.

Suggested Citation

  • Gertsbakh, I. & Gurevich, Yuri, 1982. "Homogeneous optimal fleet," Transportation Research Part B: Methodological, Elsevier, vol. 16(6), pages 459-470, December.
  • Handle: RePEc:eee:transb:v:16:y:1982:i:6:p:459-470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(82)90004-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saltzman, Robert M. & Stern, Helman I., 2022. "The multi-day aircraft maintenance routing problem," Journal of Air Transport Management, Elsevier, vol. 102(C).
    2. Liu, Tao & (Avi) Ceder, Avishai, 2017. "Deficit function related to public transport: 50 year retrospective, new developments, and prospects," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 1-19.
    3. Stern, Helman I. & Gertsbakh, Ilya B., 2019. "Using deficit functions for aircraft fleet routing," Operations Research Perspectives, Elsevier, vol. 6(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:16:y:1982:i:6:p:459-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.