IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v35y2001i10p863-880.html
   My bibliography  Save this article

Improved velocity estimation using single loop detectors

Author

Listed:
  • Coifman, Benjamin

Abstract

This paper develops an improved algorithm for estimating velocity from single loop detector data. Unlike preceding works, the algorithm is simple enough that it can be implemented using existing controller hardware. The discussion shows how the benefits of this work extend to automated tests of detector data quality at dual loop speed traps. Finally, this paper refutes an earlier study that found conventional single loop velocity estimates are biased.

Suggested Citation

  • Coifman, Benjamin, 2001. "Improved velocity estimation using single loop detectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 863-880, December.
  • Handle: RePEc:eee:transa:v:35:y:2001:i:10:p:863-880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(00)00028-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dailey, D. J., 1999. "A statistical algorithm for estimating speed from single loop volume and occupancy measurements," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 313-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coifman, Benjamin, 2004. "Distributed Surveillance and Control on Freeways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2wx1d9ck, Institute of Transportation Studies, UC Berkeley.
    2. Soriguera, F. & Rosas, D. & Robusté, F., 2010. "Travel time measurement in closed toll highways," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1242-1267, December.
    3. Kockelman, Kara M. & Ma, Jianming, 2007. "Freeway Speeds and Speed Variations Preceding Crashes, Within and Across Lanes," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(1).
    4. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    5. Gao, Yuhong & Qu, Zhaowei & Song, Xianmin & Yun, Zhenyu & Xia, Yingji, 2021. "A novel relationship model between signal timing, queue length and travel speed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Coifman, Benjamin, 2014. "Revisiting the empirical fundamental relationship," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 173-184.
    7. Lu, Xiao-Yun & Kim, ZuWhan & Cao, Meng & Varaiya, Pravin & Horowitz, Roberto, 2010. "Deliver a Set of Tools for Resolving Bad Inductive Loops and Correcting Bad Data," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9kj122bt, Institute of Transportation Studies, UC Berkeley.
    8. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    9. Sogutlugil, Mihriban, 2005. "Examining the Effects of Variability in Average Link Speeds on Estimated Mobile Source Emissions and Air Quality," University of California Transportation Center, Working Papers qt9j08v6rr, University of California Transportation Center.
    10. Coifman, Benjamin & Varaiya, Pravin, 2002. "Deployment and Evaluation of Real-Time Vehicle Reidentification from an Operations Perspective," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6tp5w2gt, Institute of Transportation Studies, UC Berkeley.
    11. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 372-384, February.
    12. Agafonov, Evgeny & Bargiela, Andrzej & Burke, Edmund & Peytchev, Evtim, 2009. "Mathematical justification of a heuristic for statistical correlation of real-life time series," European Journal of Operational Research, Elsevier, vol. 198(1), pages 275-286, October.
    13. Coifman, Benjamin, 2004. "An Assessment of Loop Detector and RTMS Performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qt5909m, Institute of Transportation Studies, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    2. Li, Baibing, 2009. "On the recursive estimation of vehicular speed using data from a single inductance loop detector: A Bayesian approach," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 391-402, May.
    3. Coifman, Benjamin, 1999. "Improved Data Measurement Using Existing Loop Detectors," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8m6899gm, Institute of Transportation Studies, UC Berkeley.
    4. Chen, Chao, 2003. "Freeway Performance Measurement System (PeMS)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j93p90t, Institute of Transportation Studies, UC Berkeley.
    5. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    6. Soriguera, F. & Rosas, D. & Robusté, F., 2010. "Travel time measurement in closed toll highways," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1242-1267, December.
    7. Li, Baibing, 2010. "Bayesian inference for vehicle speed and vehicle length using dual-loop detector data," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 108-119, January.
    8. Agafonov, Evgeny & Bargiela, Andrzej & Burke, Edmund & Peytchev, Evtim, 2009. "Mathematical justification of a heuristic for statistical correlation of real-life time series," European Journal of Operational Research, Elsevier, vol. 198(1), pages 275-286, October.
    9. Coifman, Benjamin, 2001. "Traffic Data Measurement and Validation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt72t619n7, Institute of Transportation Studies, UC Berkeley.
    10. Li, Baibing, 2017. "Stochastic modeling for vehicle platoons (I): Dynamic grouping behavior and online platoon recognition," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 364-377.
    11. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    12. Coifman, Benjamin & Lee, Zu-Hsu, 2000. "New Aggregation Strategies to Improve Velocity Estimation from Single Loop Detectors," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3xt4s4xf, Institute of Transportation Studies, UC Berkeley.
    13. Sun, Lu & Yang, Jun & Mahmassani, Hani, 2008. "Travel time estimation based on piecewise truncated quadratic speed trajectory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 173-186, January.
    14. Kim, Jinwon, 2022. "Does roadwork improve road speed? Evidence from urban freeways in California," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    15. Coifman, Benjamin, 2004. "Distributed Surveillance and Control on Freeways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2wx1d9ck, Institute of Transportation Studies, UC Berkeley.
    16. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:35:y:2001:i:10:p:863-880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.