IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v34y2000i2p103-123.html
   My bibliography  Save this article

A model of speed profiles for traffic calmed roads

Author

Listed:
  • Barbosa, Heloisa M.
  • Tight, Miles R.
  • May, Anthony D.

Abstract

The influence of traffic calming measures on the speed of unimpeded vehicles has been investigated by evaluating differences in speed profiles obtained from various combinations of traffic calming measures. A case study has been conducted in the City of York (UK) focusing on traffic calming measures such as speed humps (flat-topped and round topped), speed cushions and chicanes implemented in sequence. Vehicles' passing times were simultaneously recorded at 16 points along each traffic calmed link. From these data a speed profile for each individual vehicle could be derived. An empirical model was developed using multiple regression analysis techniques based on data collected at three calibration sites. Speeds along these links were described as a function of the input speed, the type of measure and the distance between measures. The speed profile model was shown to be a good representation for the data from the calibration sites. It efficiently predicted speeds of unimpeded vehicles over a given combination of traffic calming measures in sequence. The validation process, based on data collected at three validation sites, also indicated that the model provided a good representation of the observed profiles at these sites, with the exception of the prediction of the effects of the chicanes on speeds. This type of measure was shown to produce diverse impacts on speeds which depended on the detailed design. While the model is a useful design tool, recommendations have been made for further enhancement to it.

Suggested Citation

  • Barbosa, Heloisa M. & Tight, Miles R. & May, Anthony D., 2000. "A model of speed profiles for traffic calmed roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(2), pages 103-123, February.
  • Handle: RePEc:eee:transa:v:34:y:2000:i:2:p:103-123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00067-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boeri, Marco & Scarpa, Riccardo & Chorus, Caspar G., 2014. "Stated choices and benefit estimates in the context of traffic calming schemes: Utility maximization, regret minimization, or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 121-135.
    2. Ronghui Liu & James Tate, 2004. "Network effects of intelligent speed adaptation systems," Transportation, Springer, vol. 31(3), pages 297-325, August.
    3. Maciej Kruszyna & Marta Matczuk-Pisarek, 2021. "The Effectiveness of Selected Devices to Reduce the Speed of Vehicles on Pedestrian Crossings," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    4. Sogutlugil, Mihriban, 2005. "Examining the Effects of Variability in Average Link Speeds on Estimated Mobile Source Emissions and Air Quality," University of California Transportation Center, Working Papers qt9j08v6rr, University of California Transportation Center.
    5. Xin Lin & Chris M. J. Tampère & Stef Proost, 2020. "Optimizing Traffic System Performance with Environmental Constraints: Tolls and/or Additional Delays," Networks and Spatial Economics, Springer, vol. 20(1), pages 137-177, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:34:y:2000:i:2:p:103-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.