IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v140y2020icp16-35.html
   My bibliography  Save this article

Multimodal subsidy design for network capacity flexibility optimization

Author

Listed:
  • Zheng, Yu
  • Zhang, Xiaoning
  • Liang, Zhe

Abstract

Transportation networks are facing severe congestion due to the increasing burden of traffic demand and unexpected incidents. Therefore enhancing the network capacity flexibility is the urgent task of transportation managers. Apart from the expansion of road links, economic approaches such as congestion pricing are more effective ways of improving network capacity flexibility. However, congestion pricing often receives objection since it brings excessive travel cost to travelers. A more acceptable economic scheme of adjusting route choice behavior might be offering a subsidy, in a manner of reducing existing charges. In light of this incentive, we propose a solution in the form of multimodal subsidy design with the goal of optimizing network capacity flexibility. To validate the general applicability of the proposed multimodal subsidy schemes, we evaluate and quantify the network capacity flexibility by adopting three different measurement approaches, which are based on the concepts of reserve capacity, total capacity flexibility, and limited capacity flexibility respectively. Three mathematical models are established using these different capacity flexibility measurement approaches, each of which is formulated as a bi-level programming problem. The upper-level problem is to optimize the values of various subsidies, including road link subsidies, parking subsidies, and metro ticket subsidies to enhance the network capacity flexibility. The lower-level problem is a nested-logit based variation inequality program that considers multimode traffic and predicts how drivers and passengers react to the subsidy decision delivered from the upper-level problem. Numerical examples are provided to demonstrate how the proposed subsidy schemes affect network capacity flexibility as well as to compare the effects of different subsidy schemes.

Suggested Citation

  • Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
  • Handle: RePEc:eee:transa:v:140:y:2020:i:c:p:16-35
    DOI: 10.1016/j.tra.2020.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420306777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    2. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    3. Guo, Xiaolei & Yang, Hai, 2010. "Pareto-improving congestion pricing and revenue refunding with multiple user classes," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 972-982, September.
    4. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    5. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    6. Yang, Chao & Chen, Anthony, 2009. "Sensitivity analysis of the combined travel demand model with applications," European Journal of Operational Research, Elsevier, vol. 198(3), pages 909-921, November.
    7. Yang Liu & Xiaolei Guo & Hai Yang, 2009. "Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks," Netnomics, Springer, vol. 10(1), pages 123-140, April.
    8. Morlok, Edward K. & Chang, David J., 2004. "Measuring capacity flexibility of a transportation system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 405-420, July.
    9. Chen, Anthony & Kasikitwiwat, Panatda, 2011. "Modeling capacity flexibility of transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 105-117, February.
    10. Adler, Jeffrey L. & Cetin, Mecit, 2001. "A direct redistribution model of congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 447-460, June.
    11. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    12. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    13. Wong, S. C., 1996. "On the reserve capacities of priority junctions and roundabouts," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 441-453, December.
    14. Chengpeng Wan & Zaili Yang & Di Zhang & Xinping Yan & Shiqi Fan, 2018. "Resilience in transportation systems: a systematic review and future directions," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 479-498, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    2. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    3. Fan, Yinchao & Ding, Jianxun & Long, Jiancheng & Wu, Jianjun, 2024. "Modeling and evaluating the travel behaviour in multimodal networks: A path-based unified equilibrium model and a tailored greedy solution algorithm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    4. Xu, Haonan & Liu, Jiaguo & Qi, Siwen, 2024. "Incentive policy for rail-water multimodal transport: Subsidizing price or constructing dry port?," Transport Policy, Elsevier, vol. 150(C), pages 219-243.
    5. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    6. Zhou, Wenhan & Weng, Jiancheng & Li, Tongfei & Fan, Bo & Bian, Yang, 2024. "Modeling the road network capacity in a mixed HV and CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    7. Jie Liu & Jingrong Zhu & Di Lu & Donghui Yuan & Hossein Azadi, 2023. "The Effectiveness of Improvement Measures in Road Transport Network Resilience: A Systematic Review and Meta-Analysis," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    8. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    2. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    3. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    5. Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
    6. Jansuwan, Sarawut & Chen, Anthony & Xu, Xiangdong, 2021. "Analysis of freight transportation network redundancy: An application to Utah’s bi-modal network for transporting coal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 154-171.
    7. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    8. Yang Liu & Yu (Marco) Nie, 2017. "A Credit-Based Congestion Management Scheme in General Two-Mode Networks with Multiclass Users," Networks and Spatial Economics, Springer, vol. 17(3), pages 681-711, September.
    9. Chen, Anthony & Kasikitwiwat, Panatda, 2011. "Modeling capacity flexibility of transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 105-117, February.
    10. Chen, Linxi & Yang, Hai, 2012. "Managing congestion and emissions in road networks with tolls and rebates," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 933-948.
    11. Zhou, Wenhan & Weng, Jiancheng & Li, Tongfei & Fan, Bo & Bian, Yang, 2024. "Modeling the road network capacity in a mixed HV and CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    12. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    13. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    14. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    15. Sugiura, Satoshi & Chen, Anthony, 2021. "Vulnerability analysis of cut-capacity structure and OD demand using Gomory-Hu tree method," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 111-127.
    16. Zhao, Y. & Triantis, K. & Teodorovic, D. & Edara, P., 2010. "A travel demand management strategy: The downtown space reservation system," European Journal of Operational Research, Elsevier, vol. 205(3), pages 584-594, September.
    17. Yang, Chao & Chen, Anthony & Xu, Xiangdong & Wong, S.C., 2013. "Sensitivity-based uncertainty analysis of a combined travel demand model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 225-244.
    18. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    19. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:140:y:2020:i:c:p:16-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.