IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v105y2017icp138-153.html
   My bibliography  Save this article

Developing a disaggregate travel demand system of models using data mining techniques

Author

Listed:
  • Ghasri, Milad
  • Hossein Rashidi, Taha
  • Waller, S. Travis

Abstract

The travel demand modelling has experienced a paradigm shift from aggregate to disaggregate models, leading to an increase in computational time and simulation cost. Meanwhile, transferability models have emerged to reduce the associated cost and computational burden, but haven’t discounted the disaggregation level. This research proposes the proof of the concept of an innovative transferability modelling framework to estimate total number of trips and trip attributes in a tour of trips at a disaggregate level. In contrast to tour-based or activity-based models, the focus of transferability models is on replicating trip patterns rather than reflecting travellers’ behaviour. Similar to previous transferability models, classifying decision tree is utilized as one of the modelling techniques in this study. Moreover, the merits of a modified version of decision tree and the random forest methods are examined. Victorian Integrated Survey of Travel and Activity (VISTA) in 2007 and 2009 are utilized to calibrate and validate the proposed framework, respectively. According to the results, the random forest method shows highest individual-level accuracy while matching the system-level observed distributions.

Suggested Citation

  • Ghasri, Milad & Hossein Rashidi, Taha & Waller, S. Travis, 2017. "Developing a disaggregate travel demand system of models using data mining techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 138-153.
  • Handle: RePEc:eee:transa:v:105:y:2017:i:c:p:138-153
    DOI: 10.1016/j.tra.2017.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416304700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Krizek, 2003. "Neighborhood services, trip purpose, and tour-based travel," Transportation, Springer, vol. 30(4), pages 387-410, November.
    2. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    3. Taha Rashidi & Abolfazl Mohammadian, 2011. "Household travel attributes transferability analysis: application of a hierarchical rule based approach," Transportation, Springer, vol. 38(4), pages 697-714, July.
    4. Barrett Jennifer H & Cairns David A, 2008. "Application of the Random Forest Classification Method to Peaks Detected from Mass Spectrometric Proteomic Profiles of Cancer Patients and Controls," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-22, February.
    5. Eric Miller & Matthew Roorda & Juan Carrasco, 2005. "A tour-based model of travel mode choice," Transportation, Springer, vol. 32(4), pages 399-422, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaobo & Karimpour, Abolfazl & Wu, Yao-Jan, 2020. "Statistical evaluation of data requirement for ramp metering performance assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 248-261.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    2. Hasnine, Md Sami & Habib, Khandker Nurul, 2018. "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling," Transport Policy, Elsevier, vol. 71(C), pages 70-80.
    3. Kim, Seheon & Rasouli, Soora & Timmermans, Harry & Yang, Dujuan, 2018. "Estimating panel effects in probabilistic representations of dynamic decision trees using bayesian generalized linear mixture models," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 168-184.
    4. Ruan, Minyan & Lin, Jie (Jane) & Kawamura, Kazuya, 2012. "Modeling urban commercial vehicle daily tour chaining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1169-1184.
    5. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    6. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    7. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    8. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    9. Ruifen Sun & Min Li & Qunqi Wu, 2018. "Research on Commuting Travel Mode Choice of Car Owners Considering Return Trip Containing Activities," Sustainability, MDPI, vol. 10(10), pages 1-12, September.
    10. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    11. Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    12. Vytautas Dumbliauskas & Vytautas Grigonis, 2020. "An Empirical Activity Sequence Approach for Travel Behavior Analysis in Vilnius City," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    13. Arentze, Theo & Timmermans, Harry, 2007. "Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 772-783, August.
    14. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.
    15. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
    16. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. André de Palma & Nathalie Picard & Ignacio Inoa, 2014. "Discrete choice decision-making with multiple decision-makers within the household," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 363-382, Edward Elgar Publishing.
    18. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    19. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    20. Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:105:y:2017:i:c:p:138-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.