IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v77y2010i1p42-48.html
   My bibliography  Save this article

Evolution of resistance and progression to disease during clonal expansion of cancer

Author

Listed:
  • Durrett, Richard
  • Moseley, Stephen

Abstract

Inspired by previous work of Iwasa et al. (2006) and Haeno et al. (2007), we consider an exponentially growing population of cancerous cells that will evolve resistance to treatment after one mutation or display a disease phenotype after two or more mutations. We prove results about the distribution of the first time when k mutations have accumulated in some cell, and about the growth of the number of type-k cells. We show that our results can be used to derive the previous results about a tumor grown to a fixed size.

Suggested Citation

  • Durrett, Richard & Moseley, Stephen, 2010. "Evolution of resistance and progression to disease during clonal expansion of cancer," Theoretical Population Biology, Elsevier, vol. 77(1), pages 42-48.
  • Handle: RePEc:eee:thpobi:v:77:y:2010:i:1:p:42-48
    DOI: 10.1016/j.tpb.2009.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580909001245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burden, Conrad J. & Wei, Yi, 2018. "Mutation in populations governed by a Galton–Watson branching process," Theoretical Population Biology, Elsevier, vol. 120(C), pages 52-61.
    2. Sophie Pénisson & Amaury Lambert & Cristian Tomasetti, 2022. "Evaluating cancer etiology and risk with a mathematical model of tumor evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Foo, Jasmine & Leder, Kevin & Schweinsberg, Jason, 2020. "Mutation timing in a spatial model of evolution," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6388-6413.
    4. Durrett, Rick & Foo, Jasmine & Leder, Kevin & Mayberry, John & Michor, Franziska, 2010. "Evolutionary dynamics of tumor progression with random fitness values," Theoretical Population Biology, Elsevier, vol. 78(1), pages 54-66.
    5. Champagnat, Nicolas & Lambert, Amaury, 2012. "Splitting trees with neutral Poissonian mutations I: Small families," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1003-1033.
    6. Hwai-Ray Tung & Rick Durrett, 2021. "Signatures of neutral evolution in exponentially growing tumors: A theoretical perspective," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-12, February.
    7. Michael D Nicholson & Tibor Antal, 2019. "Competing evolutionary paths in growing populations with applications to multidrug resistance," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:77:y:2010:i:1:p:42-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.