IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v75y2009i2p153-163.html
   My bibliography  Save this article

Biological diversity: Distinct distributions can lead to the maximization of Rao’s quadratic entropy

Author

Listed:
  • Pavoine, Sandrine
  • Bonsall, Michael B.

Abstract

Rao’s quadratic entropy (QE) is a diversity index that includes the abundances of categories (e.g. alleles, species) and distances between them. Here we show that, once the distances between categories are fixed, QE can be maximized with a reduced number of categories and by several different distributions of relative abundances of the categories. It is shown that Rao’s coefficient of distance (DISC), based on QE, can equal zero between two maximizing distributions, even if they have no categories in common. The consequences of these findings on the relevance of QE for understanding biological diversity are evaluated in three case studies. The behaviour of QE at its maximum is shown to be strongly dependent on the distance metric. We emphasize that the study of the maximization of a diversity index can bring clarity to what exactly is measured and enhance our understanding of biological diversity.

Suggested Citation

  • Pavoine, Sandrine & Bonsall, Michael B., 2009. "Biological diversity: Distinct distributions can lead to the maximization of Rao’s quadratic entropy," Theoretical Population Biology, Elsevier, vol. 75(2), pages 153-163.
  • Handle: RePEc:eee:thpobi:v:75:y:2009:i:2:p:153-163
    DOI: 10.1016/j.tpb.2009.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580909000185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solow Andrew & Polasky Stephen & Broadus James, 1993. "On the Measurement of Biological Diversity," Journal of Environmental Economics and Management, Elsevier, vol. 24(1), pages 60-68, January.
    2. Eiswerth, Mark E. & Haney, J. Christopher, 1992. "Allocating conservation expenditures: accounting for inter-species genetic distinctiveness," Ecological Economics, Elsevier, vol. 5(3), pages 235-249, June.
    3. Steven Polasky & Andrew R. Solow, 1993. "Option Value, Gallot's Inequality, And The Measurement Of Biological Diversity," Boston College Working Papers in Economics 241, Boston College Department of Economics.
    4. Martin L. Weitzman, 1992. "On Diversity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 363-405.
    5. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    6. John A. C. Conybeare, 1992. "A Portfolio Diversification Model of Alliances," Journal of Conflict Resolution, Peace Science Society (International), vol. 36(1), pages 53-85, March.
    7. Andy Purvis & Andy Hector, 2000. "Getting the measure of biodiversity," Nature, Nature, vol. 405(6783), pages 212-219, May.
    8. Weitzman, M.L., 1992. "Diversity Functions," Harvard Institute of Economic Research Working Papers 1610, Harvard - Institute of Economic Research.
    9. M. S. Warren & J. K. Hill & J. A. Thomas & J. Asher & R. Fox & B. Huntley & D. B. Roy & M. G. Telfer & S. Jeffcoate & P. Harding & G. Jeffcoate & S. G. Willis & J. N. Greatorex-Davies & D. Moss & C. D, 2001. "Rapid responses of British butterflies to opposing forces of climate and habitat change," Nature, Nature, vol. 414(6859), pages 65-69, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricotta, Carlo & Szeidl, Laszlo & Moretti, Marco & Blasi, Carlo, 2011. "A partial ordering approach for functional diversity," Theoretical Population Biology, Elsevier, vol. 80(2), pages 114-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerber, Nicolas, 2011. "Biodiversity measures based on species-level dissimilarities: A methodology for assessment," Ecological Economics, Elsevier, vol. 70(12), pages 2275-2281.
    2. Perry, Neil & Shankar, Sriram, 2017. "The State-contingent Approach to the Noah's Ark Problem," Ecological Economics, Elsevier, vol. 134(C), pages 65-72.
    3. Perry, Neil, 2010. "The ecological importance of species and the Noah's Ark problem," Ecological Economics, Elsevier, vol. 69(3), pages 478-485, January.
    4. Bartkowski, Bartosz & Lienhoop, Nele & Hansjürgens, Bernd, 2015. "Capturing the complexity of biodiversity: A critical review of economic valuation studies of biological diversity," Ecological Economics, Elsevier, vol. 113(C), pages 1-14.
    5. Safarzynska, Karolina, 2017. "The Implications of Industrial Development for Diversification of Fuels," Ecological Economics, Elsevier, vol. 137(C), pages 37-46.
    6. Martin L. Weitzman, 1998. "The Noah's Ark Problem," Econometrica, Econometric Society, vol. 66(6), pages 1279-1298, November.
    7. Stephen Polasky & Jeffrey D. Camm & Brian Garber-Yonts, 2001. "Selecting Biological Reserves Cost-Effectively: An Application to Terrestrial Vertebrate Conservation in Oregon," Land Economics, University of Wisconsin Press, vol. 77(1), pages 68-78.
    8. Brei, Michael & Pérez-Barahona, Agustín & Strobl, Eric, 2016. "Environmental pollution and biodiversity: Light pollution and sea turtles in the Caribbean," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 95-116.
    9. Montgomery, Claire A. & Pollak, Robert A. & Freemark, Kathryn & White, Denis, 1999. "Pricing Biodiversity," Journal of Environmental Economics and Management, Elsevier, vol. 38(1), pages 1-19, July.
    10. Timo Boppart & Kevin E. Staub, 2012. "Online accessibility of academic articles and the diversity of economics," ECON - Working Papers 075, Department of Economics - University of Zurich.
    11. van den Bergh, Jeroen C.J.M., 2008. "Optimal diversity: Increasing returns versus recombinant innovation," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 565-580, December.
    12. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    13. Nehring, Klaus & Puppe, Clemens, 2004. "Modelling phylogenetic diversity," Resource and Energy Economics, Elsevier, vol. 26(2), pages 205-235, June.
    14. Hein, Lars & Gatzweiler, Franz, 2006. "The economic value of coffee (Coffea arabica) genetic resources," Ecological Economics, Elsevier, vol. 60(1), pages 176-185, November.
    15. van Wenum, J. H. & Wossink, G. A. A. & Renkema, J. A., 2004. "Location-specific modeling for optimizing wildlife management on crop farms," Ecological Economics, Elsevier, vol. 48(4), pages 395-407, April.
    16. Zeppini, Paolo & van den Bergh, Jeroen C.J.M., 2013. "Optimal diversity in investments with recombinant innovation," Structural Change and Economic Dynamics, Elsevier, vol. 24(C), pages 141-156.
    17. Meinard, Yves & Grill, Philippe, 2011. "The economic valuation of biodiversity as an abstract good," Ecological Economics, Elsevier, vol. 70(10), pages 1707-1714, August.
    18. Martin L. Weitzman, 1993. "What to Preserve? An Application of Diversity Theory to Crane Conservation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 157-183.
    19. Baumgartner, Stefan & Becker, Christian & Faber, Malte & Manstetten, Reiner, 2006. "Relative and absolute scarcity of nature. Assessing the roles of economics and ecology for biodiversity conservation," Ecological Economics, Elsevier, vol. 59(4), pages 487-498, October.
    20. Courtois, Pierre & Figuieres, Charles & Mulier, Chloe & Weill, Joakim, 2018. "A Cost–Benefit Approach for Prioritizing Invasive Species," Ecological Economics, Elsevier, vol. 146(C), pages 607-620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:75:y:2009:i:2:p:153-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.