IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v73y2008i1p24-46.html
   My bibliography  Save this article

The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation

Author

Listed:
  • Rouzine, Igor M.
  • Brunet, Éric
  • Wilke, Claus O.

Abstract

We use traveling-wave theory to derive expressions for the rate of accumulation of deleterious mutations under Muller's ratchet and the speed of adaptation under positive selection in asexual populations. Traveling-wave theory is a semi-deterministic description of an evolving population, where the bulk of the population is modeled using deterministic equations, but the class of the highest-fitness genotypes, whose evolution over time determines loss or gain of fitness in the population, is given proper stochastic treatment. We derive improved methods to model the highest-fitness class (the stochastic edge) for both Muller's ratchet and adaptive evolution, and calculate analytic correction terms that compensate for inaccuracies which arise when treating discrete fitness classes as a continuum. We show that traveling-wave theory makes excellent predictions for the rate of mutation accumulation in the case of Muller's ratchet, and makes good predictions for the speed of adaptation in a very broad parameter range. We predict the adaptation rate to grow logarithmically in the population size until the population size is extremely large.

Suggested Citation

  • Rouzine, Igor M. & Brunet, Éric & Wilke, Claus O., 2008. "The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation," Theoretical Population Biology, Elsevier, vol. 73(1), pages 24-46.
  • Handle: RePEc:eee:thpobi:v:73:y:2008:i:1:p:24-46
    DOI: 10.1016/j.tpb.2007.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580907001207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2007.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rouzine, Igor M. & Coffin, John M., 2010. "Multi-site adaptation in the presence of infrequent recombination," Theoretical Population Biology, Elsevier, vol. 77(3), pages 189-204.
    2. Jain, Kavita & John, Sona, 2016. "Deterministic evolution of an asexual population under the action of beneficial and deleterious mutations on additive fitness landscapes," Theoretical Population Biology, Elsevier, vol. 112(C), pages 117-125.
    3. Good, Benjamin H. & Desai, Michael M., 2013. "Fluctuations in fitness distributions and the effects of weak linked selection on sequence evolution," Theoretical Population Biology, Elsevier, vol. 85(C), pages 86-102.
    4. Jakob J Metzger & Stephan Eule, 2013. "Distribution of the Fittest Individuals and the Rate of Muller's Ratchet in a Model with Overlapping Generations," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-10, November.
    5. Barton, Nick & Sachdeva, Himani, 2024. "Limits to selection on standing variation in an asexual population," Theoretical Population Biology, Elsevier, vol. 157(C), pages 129-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:73:y:2008:i:1:p:24-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.